
알 고 리 즘

< C언어 >

충북교육연구정보원 정보영재교육원 | SW·AI교실 | 정보아카데미 강사

흥덕고등학교 교사 박정진

1

• 교육자료: https://gifted.datahub.pe.kr/

• 소스코드: https://gifted.datahub.pe.kr/src/

• Smart OJ: https://soj.datahub.pe.kr/

https://gifted.datahub.pe.kr/
https://algo.datahub.pe.kr/src/
https://gifted.datahub.pe.kr/
https://gifted.datahub.pe.kr/src/
https://soj.datahub.pe.kr/


2



3



4



5

#include <iostream>

using namespace std;

int main()
{
    cout << "Hello world!" << endl;
    return 0;
}

Build & Run: F9

슬래쉬 역슬래쉬

한글폰트 / \

영문폰트 / \



6

≫ Editor…

슬래쉬 역슬래쉬

한글폰트 / \

영문폰트 / \



7

Build & Run: F9



실행 파일 생성과정

▪ Compile & Linking

8



OJ 사용법

▪ OJ(온라인 저지)란?

• 프로그래밍 대회에서 프로그램들

을 시험할 목적으로 만들어진

온라인 시스템이다. 대회 연습

용으로 사용되기도 한다.

• 본 수업용 OJ

•https://soj.datahub.pe.kr/

9

https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/
https://soj.datahub.pe.kr/


OJ 사용법

▪ 파일제출

• CodeBlock 등 IDE에서 프로그램 작성

• 완성된 프로그램을 OJ에 업로드 후

• 채점 결과 확인

• 채점 결과 종류

•모두 맞음

•틀림 | 정확도: __%

•실행중 에러 | 정확도: __%

•컴파일 에러

10



Online Judge 프로그램 계정 정보
순번 소속학교 이름 학년 ID PW

1 형석중학교 구도헌 중3 gifted2501 이름영타로

2 세광중학교 김경훈 중2 gifted2502 “

3 경덕중학교 김민재 중3 gifted2503 “

4 세광중학교 김민찬 중2 gifted2504 “

5 경덕중학교 김선율 중1 gifted2505 “

6 옥산중학교 박성현 중2 gifted2506 “

7 서현중학교 박세현 중1 gifted2507 “

8 솔밭중학교 배수연 중3 gifted2508 “

9 충북대학교사범대학부설중학교 신동학 중2 gifted2509 “

10 형석중학교 윤준서 중3 gifted2510 “

11 송절중학교 장태을 중1 gifted2511 “

12 충북대학교사범대학부설중학교 전태우 중1 gifted2512 “

13 한국교원대학교부설미호중학교 정태민 중1 gifted2513 “

14 복대중학교 지명원 중3 gifted2514 “

15 의림여자중학교 최세진 중2 gifted2515 “



C 언어 기초 문법

▪ 함수란?

• 특정한 기능을 하는 코드들의 집합

• C언어에서는 ______() 형태

예시)

최소값을 구하는 함수: min()

절대값을 구하는 함수: abs()

• main() 함수

프로그램의 시작 지점

▪ C언어로 프로그램을 작성한다는 것

• 함수를 만들고, 만든 함수들의 실행 순서를 결정하는 것

12



C 언어 기초 문법

▪ return 0;

• 함수 결과값 0으로 함수 종료

▪ printf("Hello world! \n");

• printf() 함수: 표준 출력 장치에 출력하는 기능을 하는 함수 

• 인수: "Hello world! \n" 를 printf 라는 함수에 전달

▪ #include <stdio.h>

• 표준 입출력 함수들에 대한 정보를 가지고 있는 stdio.h 라는 파일을 불러온다.

▪ 문장의 끝

• 함수 내에 존재하는 문장의 끝에는 세미콜론 문자 ; 를 붙여준다.

13



수의 표현 방식

▪ 정수형

• 고정소수점 데이터형식

• (fixed-point data format)

14

7.0

123.0

1234.0

-12.0

-256.0

부호부 정수부



C언어의 자료형(data type)

▪ 정수형

• char         

(문자형) - 숫자도 저장하지만 주로 문자를 저장함

character

• short

short int

• int

integer

• long

long integer

• long long

64bit long

15



수의 표현 방식

▪ 부동소수점(浮動小數點) 데이터형식

• 2진수에서는…

ex) 10110.1001001001

= 1.01101001001001 x 24

• 장점 : 아주 큰 수, 아주 작은 수 표현 가능

• 단점 : 계산하는데 시간이 오래 걸림

16

부호부 지수부 가수부



C언어의 자료형(data type)

▪ 실수형

• float         

•단정도 정밀도 실수 (소수점 이하 6자리까지)

•4byte(32bit)

• double

•배정도 정밀도 실수 (소수점 이하 15자리까지)

•8byte(64bit)

17

1 8 23

1 11 52

부호부 지수부 가수부

부호부 지수부 가수부



수의 표현 방식

▪정수(양수)의 표현 - unsigned

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0

127

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 1 1 3

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

255

128

1 0 0 0 0 1 0 0 132

1 0 0 0 0 0 1 1 131

1 0 0 0 0 0 1 0 1300 0 0 0 0 1 0 0 4

1 0 0 0 0 0 0 1 129

:

:

18



수의 표현 방식

▪정수 (양수, 음수)의 표현 - signed

      양수 음수

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0

127

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 1 1 3

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

-1

-128

1 0 0 0 0 1 0 0 -124

1 0 0 0 0 0 1 1 -125

1 0 0 0 0 0 1 0 -1260 0 0 0 0 1 0 0 4

1 0 0 0 0 0 0 1 -127

:

:

19

1111 1000 (-?)
0000 0111 2의보수



수의 표현 방식

▪ 큰 수의 표현

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0

32767

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 1 1 3

215-1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32768 -215

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4

:

20



수의 표현 방식

▪ 더 큰 수의 표현

0

0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 1 1 1 1 1 1 1 231-11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-2311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21



수의 표현 방식

22

#include <iostream>

using namespace std;

int main() {

    signed char a = 0;

    for(int i=0; i<256; i++) {  // 256번 반복

printf("%5d", a);

        a++;

    }

    puts("\n");

    unsigned char b = 0;

    for(int i=0; i<256; i++) {  // 256번 반복

printf("%5d", b);

        b++;

    }

}



수의 표현 방식

▪ 비트열 직접 입력하기
#include <iostream>

using namespace std;

int main() {

    char a;

    a = 0b00001111;

    printf("a: %d\n", a);

    a = 0b11111111;

    printf("a: %d\n", a);

    short b;

    b = 0x00FF;

    printf("b: %d\n", b);

    b = 0xFFFF;

    printf("b: %d\n", b);

}



C언어의 자료형(data type)

용도 타입 크기 signed(부호있음) unsigned(부호없음)

정수형
(문자형)

char 1B 8bit -27 ~ 27-1 (127) 0 ~ 28-1 (256)

정수형

short 2B 16bit -215 ~ 215-1 (≒3.2만) 0 ~ 216-1 (≒6.5만)

int 4B 32bit -231 ~ 231-1 (≒21억) 0 ~ 232-1 (≒42억)

long 4B 32bit -231 ~ 231-1 (≒21억) 0 ~ 232-1 (≒42억)

long long 8B 64bit -263 ~ 263-1 (≒922경) 0 ~ 264-1 (≒1844경)

실수형

float 4B 32bit 3.4x10-38 ~ 3.4x1038

double 8B 64bit 1.7x10-308 ~ 1.7x10308

24



수의 표현 방식

▪데이터 타입 별 사이즈 ▪ 결과

25

#include <iostream>

using namespace std;

int main() {

    puts("size of data types.");

    printf("char  : %d\n", sizeof(char));

    printf("short : %d\n", sizeof(short));

    printf("int   : %d\n", sizeof(int));

    printf("long  : %d\n", sizeof(long));

    printf("llong : %d\n", sizeof(long long));

}



변수 (variable)

▪ 변수의 의미

• ‘변하는 수’ 라는 의미

• 무언가를 기억해야 할 때 사용

• 자료를 저장하는 공간에 이름은 붙인 것

• 프로그래머가 이름(변수명)을 결정

▪ 변수의 사용

• 선언을 한 뒤부터 사용 가능

• = 연산자로 값을 할당

• 선언과 동시에 할당 가능(초기화)

• 초기화 하지 않으면 쓰레기 값

26

#include <stdio.h>

int main() {

    // 변수 선언(초기화 없음)

    int age;    

    // 변수에 값 할당

    age = 20;  

    // 변수 선언(초기화 없음)

    int height;

    // 변수 선언과 동시에 할당

    char blood = 'A';   

    // 변수 선언과 동시에 할당

    double pi = 3.14159;

}

주소 내용(값) 이름

1001 20 age

1002

1003

1004

1005 height

1006

1007

1008

1009 'A' Blood

1010 3.14159 pi

1011

1012

1013

1014

1015

1016

1017



서식문자

▪ 서식문자
서식문자 출력 형태 사용 타입

%c 단일 문자 char

%d 부호 있는 10진 정수 char, 
short, int%i 부호 있는 10진 정수, %d와 같음

%f, %lf 부호 있는 10진 실수 float, double

%s 문자열 char[]

%o 부호 없는 8진 정수

char, 
short, 
int,

%u 부호 없는 10진 정수

%x 부호 없는 16진 정수, 소문자 사용

%X 부호 없는 16진 정수, 대문자 사용

%e e 표기법에 의한 실수 float, double

%lld, %llu 부호 있는, 부호 없는 long long 정수 long long

%g 값에 따라서 %f, %e 둘 중 하나를 선택
float, double

%G 값에 따라서 %f, %G 둘 중 하나를 선택

%% % 기호 출력

#include <stdio.h>

int main() {

    int age;    // 변수 선언

    age = 20;   // 변수에 할당

    int height, weight;

    char blood = 'A';   // 선언과 할당

    double pi = 3.141592;

    printf("age: %d \n", age);

    printf("height: %d \n", height);

    printf("blood: %c \n", blood);

    printf("pi: %lf \n", pi);

    printf("pi: %.2lf \n", pi);

}



서식문자

▪ 서식 문자의 종류와 그 의미

28

서식문자 출력 형태

%c 단일 문자

%d 부호 있는 10진 정수

%i 부호 있는 10진 정수, %d와 같음

%f, %lf 부호 있는 10진 실수

%s 문자열

%o 부호 없는 8진 정수

%u 부호 없는 10진 정수

%x 부호 없는 16진 정수, 소문자 사용

%X 부호 없는 16진 정수, 대문자 사용

%e e 표기법에 의한 실수

%lld, %llu 부호 있는, 부호 없는 long long 정수

%g 값에 따라서 %f, %e 둘 중 하나를 선택

%G 값에 따라서 %f, %G 둘 중 하나를 선택

%% % 기호 출력

#include <stdio.h>

int main() {

char blood = 'A';

int age = 20;

double pi=3.1415926535;

printf("blood: %c. \n", blood);

printf("name : %s. \n", "Reinhard");

printf("age  : %d. \n", age);

printf("pi   : %lf. \n\n", pi);

printf("blood: %10c. \n", blood);

printf("name : %10s. \n", "Reinhard");

printf("age  : %10d. \n", age);

printf("pi   : %10.4lf. \n\n", pi);

printf("blood: %-10c. \n", blood);

printf("name : %-10s. \n", "Reinhard");

printf("age  : %-10d. \n", age);

printf("pi   : %-10.4lf.  \n\n", pi);

}

[기본서식]

[오른쪽 정렬]

[왼쪽 정렬]



printf 함수의 기본적인 이해

▪ 첫 번째 인수로 전달된 문자열의 서식에 맞게 출력

29

#include <stdio.h>

int main() {

    int age = 20;

    int year = 2010, month = 10, day = 31;

    printf("my age: %d\n", age);

    printf("my birthday: %d/%d/%d\n", year, month, day);

    printf("Good\nmorning\neveryday\n");

}

//      %d : decimal(10진)

//       \n : new line

%d 의 의미: 
decimial(10진)

10진수로
출력하라는 의미



상수 (constant)

▪ 상수의 의미

• 프로그램 실행도중 값을 변경할 수

없는 데이터

▪ 상수의 종류

1. 리터럴 상수

2. 매크로 상수

3. 변수의 고정

1. 리터럴 상수

프로그램내에서 지정된 값.

1) 정수 상수

int n = 10;

2) 실수 상수

double mili = 0.001;

double mili = 1.0e-3;

double ton = 1.0e+3;

3) 문자 상수

char grade = 'A';



상수 (constant)

2. 매크로 상수

• #define 문 사용

3. 변수의 고정

• const 키워드 사용

#include <stdio.h>

#define PI 3.141592

int main() {

   int r = 5;

   double s;

   s = PI*r*r;

   printf("%lf\n", s);

   r++;

   s = PI*r*r;

   printf("%lf\n", s);

   r++;

}

#include <stdio.h>

int main() {

   const double PI=3.141592;

   int r = 5;

   double s;

   s = PI*r*r;

   printf("%lf\n", s);

   r++;

   s = PI*r*r;

   printf("%lf\n", s);

   r++;

}



서식문자

▪ 서식 문자의 종류와 그 의미

32

서식문자 출력 형태

%c 단일 문자

%d 부호 있는 10진 정수

%i 부호 있는 10진 정수, %d와 같음

%f, %lf 부호 있는 10진 실수

%s 문자열

%o 부호 없는 8진 정수

%u 부호 없는 10진 정수

%x 부호 없는 16진 정수, 소문자 사용

%X 부호 없는 16진 정수, 대문자 사용

%e e 표기법에 의한 실수

%lld, %llu 부호 있는, 부호 없는 long long 정수

%g 값에 따라서 %f, %e 둘 중 하나를 선택

%G 값에 따라서 %f, %G 둘 중 하나를 선택

%% % 기호 출력

#include <stdio.h>

int main() {

char blood = 'A';

int age = 20;

double pi=3.1415926535;

printf("blood: %c. \n", blood);

printf("name : %s. \n", "Reinhard");

printf("age  : %d. \n", age);

printf("pi   : %lf. \n\n", pi);

printf("blood: %10c. \n", blood);

printf("name : %10s. \n", "Reinhard");

printf("age  : %10d. \n", age);

printf("pi   : %10.4lf. \n\n", pi);

printf("blood: %-10c. \n", blood);

printf("name : %-10s. \n", "Reinhard");

printf("age  : %-10d. \n", age);

printf("pi   : %-10.4lf.  \n\n", pi);

}

[기본서식]

[오른쪽 정렬]

[왼쪽 정렬]



연산자(operator)

▪ 연산자와 피연산자

   3 + 4

  피연산자 연산자

▪ 이항연산자

• 피연산자가 두 개인 연산자

• +, -, x, ÷

▪ 단항연산자

• 피연산자가 한 개인 연산자

• -, +

▪ C언의 연산자 표기

33

의미 수학 C언어 비고

덧셈 ＋ ＋

뺄셈 － －

곱셈 × * ∨

나눗셈 ÷ / ∨

나머지 %

같다 = == ∨

다르다 != ∨

크다 >, ≥ >, >=

작다 <, ≤ <, <=

그리고 And &&

또는 Or ||



연산자(operator)

▪ 대입 연산자와 산술 연산자

34

연산자 설명 결합방향

=
연산자 오른쪽에 있는 값을 연산자 왼쪽에 있는 변수에 대입한다.

예) num = 20;
←

+
두 피연산자의 값을 더한다.

예) num = 4+3;
→

-
왼쪽 피연산자의 값에서 오른쪽 피연산자 값을 뺀다.

예) num = 4-3;
→

*
두 피연산자의 값을 곱한다.

예) num = 4*3;
→

/
왼쪽의 피연산자 값을 오른쪽 피연산자 값으로 나눈 몫을 구한다.

예) num = 7/3;
→

%
왼쪽의 피연산자 값을 오른쪽 피연산자 값으로 나눈 나머지를 구한다.

예) num = 7%3;
→



연산자(operator)

▪ 대입 연산자와 산술 연산자 실습

35

#include <stdio.h>

int main() {

int n1 = 9, n2 = 2, res;

res = n1 + n2;

printf("%d + %d = %d \n", n1, n2, res);

res = n1 - n2;

printf("%d - %d = %d \n", n1, n2, res);

printf("%d * %d = %d \n", n1, n2, n1*n2);

printf("%d / %d = %d \n", n1, n2, n1/n2);

printf("%d %% %d = %d\n", n1, n2, n1%n2);

}



자료의 형변환(type casting)

▪ 묵시적 형변환(=자동 형변환)

• 자동으로 일어나는 형변환

• 언제?

• 대입문에서 좌변과 우변의 자료형이

다를 때

• 연산식에서 피연산자간에 자료형이 다

를 때

• 변환 규칙

• 대입문의 경우 우변의 자료형이 좌변

의 자료형으로 변환

• 연산식에서는 두 피연산자 중에서 표

현 범위가 더 넓은 자료형으로 변환

#include <stdio.h>

int main() {

   char  a = 127;  // 1111 1111

   short b;

   b = a;

   printf("%d\n", b);

   char  c;

   short d = 256;  // 1 0000 0000

   c = d;

   printf("%d\n", c);

   double e = 10/4.0 +0.5;

   printf("%lf\n", e);

}



자료의 형변환(type casting)

▪ 명시적 형변환

• 프로그래머가 지정하는 형변환

• (타입) 형식을 사용한다.

• 예시

double c = 10/4;  // 2

double d = (double)10/4;  // 2.5

#include <stdio.h>

int main() {

    int i = 9 *1000*1000*1000;

    printf("%d\n", i);

    long long l = (long long)9 *1000*1000*1000;

    printf("%lld\n", l);

    double c = 10/4;

    printf("%lf\n", c);

    double d = (double)10/4;

    printf("%lf\n", d);

}



연산자(operator)

▪ 증감 연산자

38

연산자 연산의 예 의미 결합성

++a printf("%d", ++a) 선 증가, 후 연산  

a++ printf("%d", a++) 선 연산, 후 증가  

--b printf("%d", --b) 선 감소, 후 연산  

b-- printf("%d", b--) 선 연산, 후 감소  

#include <stdio.h>

int main() {

int a=10;

printf("%d\n", a++);

printf("%d\n", ++a);

int x=2, y=3;

printf("%d\n", (x++)*(y++));

printf("%d\n", (x*y));

}



연산자(operator)

▪ 비트 연산자

39

연산자 의미 예 결합성

& Bitwise AND 10 & 7  

| Bitwise OR 10 | 7  

^ Bitwise XOR 10 ^ 7  

~ Bitwise NOT ~ 7  

<< 비트열 왼쪽 시프트 8 << 1 

>> 비트열 오른쪽 시프트 8 >> 2 

10: 0000 1010
&  7: 0000 0111
    : 0000 0010

10: 0000 1010
|  7: 0000 0111
    : 0000 1111

10: 0000 1010
^  7: 0000 0111
    : 0000 1101

~  7: 0000 0111
    : 1111 1000

#include <iostream>

using namespace std;

int main() {

    printf("10 & 7 = %02X\n", 10 & 7);

    printf("10 | 7 = %02X\n", 10 | 7);

    printf("10 ^ 7 = %02X\n", 10 ^ 7);

    printf("8 << 1 = %02X\n", 8 << 1);

    printf("8 >> 2 = %02X\n", 8 >> 1);

}

1111 1111
^  1000 0000
   0111 1111



연산자(operator)

▪ 복합 대입 연산자

40

연산자 의미 사용 예 같은표현

+= 값을 더하여 대입 a+=3 a=a+3

-= 값을 빼서 대입 a-=3 a=a-3

*= 값을 곱하여 대입 a*=3 a=a*3

/= 값으로 나누어 대입 a/=3 a=a/3

%= 값으로 나눈 나머지를 대입 a%=3 a=a%3

#include <iostream>

using namespace std;

int main() {

    int a=9;

    printf("%d\n", a+=3);

    printf("%d\n", a-=3);

    printf("%d\n", a*=3);

    printf("%d\n", a/=3);

    printf("%d\n", a%=3);

}

다음 중 의미가 다른 수식은?

ⓐ c=c+1;

ⓑ c++; 

ⓒ ++c;

ⓓ c+=1; 

ⓔ ++c++;



연산자(operator)

▪ 연산자의 우선순위와 결합방향

41

▪ 꼭 기억해야할 연산자

우선순위

① ()

② ++  --  !

③ *  /  %

④ +  -

⑤ = 

좌 → 우



연산자(operator)

▪ 연산자 우선순위 실험 ▪ 연산자 결합방향 실험

42

#include <stdio.h>

int main(void) {

int a = 10+4*3-1;

printf("%d \n", a);

int b = 10+4*(3-1);

printf("%d \n", b);

int r=4+5*6/(2+1)+15-5*2;

printf("%d \n", r);

}

#include <stdio.h>

int main(void)

{

    int r = 10-1-2-3+4+5;

    printf("%d \n", r);

    int a=3, b=4, c=5, d=6;

    a = b = c = d;

    printf("%d %d %d %d", a,b,c,d);

}



scanf() 함수를 이용한 입력

▪ 키보드로부터 정수 입력을 위한

scanf 함수의 호출

43

#include <stdio.h>

int main() {

int n1, n2;

printf("input n1: ");

scanf("%d", &n1);

printf("input n2: ");

scanf("%d", &n2);

printf("%d + %d = %d\n",n1, n2, n1+n2);

printf("input two nums:\n");

scanf("%d %d", &n1, &n2);

printf("%d * %d = %d\n", n1, n2, n1*n2);

return 0;

}

OJ에 제출



연습문제 – 직사각형의 넓이

▪ 문제

• 두 점의 x, y 좌표를 입력 받아서, 

두 점이 이루는 직사각형의 넓이를

계산하여 출력하는 프로그램을 작성

하시오. (x1, y1)의 좌표가 (x2, y2)

보다 작다고 가정

• 실행의 예

▪ 정답

44

2 4

4 8

8

#include <stdio.h>

int main() {

int x1, y1;

int x2, y2;

return 0;

}

(x1, y1)

(x2, y2)

y

x

OJ에 제출

scanf("%d %d", &x1, &y1);

scanf("%d %d", &x2, &y2);

int s = (x2-x1)*(y2-y1);

printf("%d\n", s);



제어문

▪ 조건문

• if 문

• 단순 if

• if … else

• if … else if … else

• switch문

• case

• default

▪ 반복문

• while 문

• do…while 문

• for문

▪ 기타

• break 문

• continue 문

45



선택 실행 구조

▪ if 문

▪ 예시

• 100점이면 congratulation 출력

▪ if … else 문

▪ 예시

• 60점 이상이면 "Pass", 아니면

"Fail" 



선택 실행 구조

▪ if … else if … else 문

▪ 예시

• 90점 이상이면 A, 80점 이상이면 B,

• 그 외에는 C

▪ switch 문

▪ 예시

• ↑ : 전진, ← : 좌회전, → : 우회전



조건문 – if

▪ 단순 if 문

• 특정 조건을 만족하는 경우 해야 할

일이 있을 때 사용

• 처리해야 할 명령어가 2개 이상인 경

우 반드시 중괄호로 묶어야 함

48

#include <stdio.h>

int main() {

int score;

printf("input score: ");

scanf("%d", &score);

if(score == 100)

printf("Perfect!\n");

if(score >= 60) { 

printf("You good!\n");

printf("Test passed.\n");

}

return 0;

}



연산자(operator)

▪ 비교 연산자(관계 연산자)

• 두 피연산자의 관계(크다, 작다 혹은 같다)를 따지는 연산자

• true(논리적 참, 1), false(논리적 거짓, 0) 반환

49

연산자 연산의 예 의미 결합성

== a == b a와 b가 같은가 →  

!= a != b a와 b가 같지 않은가 → 

< a < b a가 b보다 작은가 → 

> a > b a가 b보다 큰가 →  

<= a <= b a가 b보다 작거나 같은가 → 

>= a >= b a가 b보다 크거나 같은가 → 



연산자(operator)

▪ 비교 연산자(관계 연산자)
• 모든 연산자는 계산 결과를 반환한다.

• 비교연산자는 참(true) 이면 1을,      

거짓(false)이면 0을 반환한다.

50

#include <stdio.h>

int main() {

int a=6, b=2;

printf("%d==%d : %d\n", a, b, a==b);

printf("%d!=%d : %d\n", a, b, a!=b);

printf("%d<%d  : %d\n", a, b, a<b);

printf("%d>%d  : %d\n", a, b, a>b);

printf("%d<=%d : %d\n", a, b, a<=b);

printf("%d>=%d : %d\n", a, b, a>=b);

}



조건문 – if

▪ if … else 문

• 특정 조건을 만족하는 경우 A를 하고

만족하지 않는 경우 B를 수행할 때 사용

• 점수를 입력 받아 60점 이상이면 ‘You 

passed!’ 를 아니면 ‘Failed.’ ‘Retry it.’ 을

출력하는 프로그램을 작성하시오.

51

#include <stdio.h>

int main() 

{

int score;

printf("input score: ");

scanf("%d", &score);

if(score >= 60) 

printf("You passed!\n");

else {

printf("Failed.\n");

printf("Retry it.\n");

}

return 0;

}



조건문 – if

▪ if … else if … else 문

• 점수를 입력 받아 90점 이상이면 'A', 

80점 이상이면 'B', 70점 이상이면 'C', 

그 밖의 경우 'F'를 출력하는 프로그램

을 작성하시오.

52

#include <stdio.h>

int main() {

int score;

char grade;

printf("input score: ");

scanf("%d", &score);

if(score >= 90) 

grade = 'A';

else if(score >= 80) 

grade = 'B';

else if(score >= 70) 

grade = 'C'; 

else

grade = 'F';

printf("grade: %c\n", grade);

return 0;

}

OJ에 제출



연습문제

▪ BMI 계산

• 체질량지수는 자신의 몸무게(kg)를 키의

제곱(m)으로 나눈 값입니다.

• 몸무게(kg단위)와 키(cm단위)를 입력받

아 BMI를 계산하여 소수점 둘째 자리까지

출력하고,

• BMI 수치에 따른 결과를 출력하시오.

• 18.5 미만이면 ‘저체중’

• 18.5 ~ 23미만이면 '정상'

• 23.0 ~ 25 미만이면 '과체중'

• 25.0 이상부터는 '비만'

53

#include <stdio.h>

int main() {

    double w;  // 몸무게

double h;  // 키

double bmi;

    scanf("%lf", &w);

    scanf("%lf", &h);

}

h = h / 100;

bmi = w / (h*h);

printf("%.2lf\n", bmi);

if(bmi < 18.5)

    puts("저체중");

else if(bmi < 23)

    puts("정상");

else if(bmi < 25)

    puts("과체중");

else

    puts("비만");

OJ에 제출



연산자(operator)

▪ 논리 연산자

• and, or, not을 표현하는 연산자

• true(1), false(0) 반환

54

연산 C연산자 연산의 예 의미 결합성

AND && a && b true면 true 리턴 → 

OR || a || b 하나라도 true면 true 리턴 →  

NOT ! !a true면 false를, false면 true 리턴 →  



조건문 – if

▪ 필기/실기 모두 60점 이상이어야 합격 ▪ 필기/실기 둘 중 하나만 60점 이상이면 합격

55

#include <stdio.h>

int main() {

int pilgi, silgi;

printf("필기와 실기 점수를 입력: ");

scanf("%d %d", &pilgi, &silgi);

if(pilgi>=60 && silgi>=60) 

printf("You passed!\n");

else {

printf("Failed.\n");

printf("Retry it.\n");

}

return 0;

}

#include <stdio.h>

int main() {

int pilgi, silgi;

printf("필기와 실기 점수를 입력: ");

scanf("%d %d", &pilgi, &silgi);

if(pilgi>=60 || silgi>=60) 

printf("You passed!\n");

else {

printf("Failed.\n");

printf("Retry it.\n");

}

return 0;

}



조건문 – if

▪ 점수가 60점 미만이 아니면 합격 ▪ 필기가 60점미만이 아니고, 실기도 60점

미만이 아니면 합격

56

#include <stdio.h>

int main() {

int score;

printf("input score: ");

scanf("%d", &score);

if( !(score<60) )

printf("You passed!\n");

else 

printf("Failed.\n");

return 0;

}

#include <stdio.h>

int main(){

int pilgi, silgi;

printf("필기와 실기 점수를 입력: ");

scanf("%d %d", &pilgi, &silgi);

if( !(pilgi<60) && !(silgi<60)) 

printf("You passed!\n");

else 

printf("Failed.\n");

return 0;

}



조건문 – switch

▪ switch 문

• 비교·선택 할 조건이 많은 경우 유용

• switch(수식)

• 수식은 정수형 변수, 정수형 수식만

가능

• case 값

• 값은 정수만 가능

• default: 기본

• break: switch 탈출

57

#include <stdio.h>

int main() {

int score;

char grade;

printf("input score: ");

scanf("%d", &score);

switch(score / 10) {

case 10:

case  9:

grade = 'A';

break;

case  8:

grade = 'B';

break;

case  7:

grade = 'C';

break;

default:

grade = 'F';

}

printf("grade: %c\n", grade);

return 0;

}

score / 10

[정수] 나누기

[정수]는

결과도 정수



연습문제

▪ 두 개의 정수와 한 개의 사칙 연

산자를 입력받아 사칙연산 결과를

처리하는 프로그램을 작성하시오.

▪ 입력되는 모든 숫자는 정수이고, 가

운데 연산자는 + - * /  % 이외는 없

다.

58

#include <stdio.h>

int main() {

    int n1, n2, res;

    char op;

    printf("예: 10 + 5\n");

    printf("계산할 수식을 입력하세요\n");

    scanf("%d %c %d", &n1, &op, &n2);

    printf("%d %c %d = %d\n", n1, op, n2, res);

    return 0;

}

switch(op) {

   case '+' : res = n1 + n2;  break;

   case '-' : res = n1 - n2;  break;

   case '*' : res = n1 * n2;  break;

   case '/' : res = n1 / n2;  break;

   case '%' : res = n1 % n2;  break;

}



반복문

▪ 반복문의 기능

• 특정 영역을 특정 조건이 만족되는 동안에 반복 실행하기 위한 문장

▪ 세 가지 형태의 반복문이 제공됨

1) while문에 의한 반복

•몇 번 반복해야 하는지 모를 때 사용, ex) 답 맞출 때까지 계속

2) do ~ while문에 의한 반복

•일단 한번은 실행하고 그 결과에 따라 다시 반복할 수도 있을 때 사용,  ex) 메뉴 입력

3) for문에 의한 반복

•반복 횟수가 정해져 있는 경우 주로 사용,  ex) 10번 출력

59



반복문 - while

▪ 형식

• 반복조건이 참인 동안 반복할 문장을

실행

▪ 예시

60

while(반복조건) {

    반복할 문장1;

    반복할 문장2;

          :

}

while(반복조건)

반복할 문장;

int n = 1;

while(n < 5) {

printf("%d \n", n);

    n++;  // n 1증가

}

n

12345

1

2

3

4



반복문 - while

▪ 5회 반복 방법1 ▪ 5회 반복 방법2

61

int c = 0;

while(c < 5) {

printf("%d \n", c);

c++;

}

int c = 1;

while(c <= 5) {

printf("%d \n", c);

c++;

}

0

1

2

3

4

1

2

3

4

5



반복문 - while

▪ 퀴즈

• 카운트 다운 숫자는 얼마까지 출력될까?

• 종료 직전 num 값은?

▪ 결과

62

#include <stdio.h>

int main() {

    int num = 10; // 10부터 시작

    puts("Rocket lunch countdown..");

    while(num > 0) {  // 0보다 크면

        printf("%2d \n", num);

        num--;  // 1씩 감소하면서…

    }

    printf("last num:%2d \n", num); 

    return 0;

}

0



반복문 - while

▪ 1부터 10까지 누계 구하기

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

sum 0 1 3 6 10 15 21 28 36 45 55

c 1 2 3 4 5 6 7 8 9 10 11

+ + + + + + + + + +

sum = sum + c

       c = c + 1

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

[초기값]

sum = 0

    c = 1

while(c < 11) while(c <= 10)

sum = sum + c

       c = c + 1



반복문 - while

▪ 1부터 10까지 누계 구하기 ▪ 소스코드

▪ 출력

64

#include <stdio.h>

int main() {

int sum=0, c=1;

while(c <= 10) {

sum=sum+c;

c++;

}

printf("%d \n", sum);

} 

55

STEP sum c

1 0 1

2

3

4

5

6

7

8

9

10

11

?



연습문제

▪ while문을 사용하여 두 정

수 a와 b를 입력 받아 a부

터 b까지 누계를 구하는 프

로그램을 작성하시오. 

   (a < b 라고 가정)

• 예

65

#include <stdio.h>

int main() {

    int a, b;

    

    return 0;

}

1 10

55



반복문 – do … while

▪ 문법

• while문은 조건을 먼저 확인하고 반

복 할지 결정하고,

• do…while문은 일단 한 번 해보고 반

복 할지 결정한다.

▪ 비교

66

do {

    반복할 문장1;

    반복할 문장2;

        :

}

while(반복조건);

int main() {

    int n = 1;

    while(n < 1) {

        printf("%d \n", n);

        n++; 

}

}

int main() {

int n = 1;

do {

printf("%d \n", n);

n++;

}

while(n < 1);

}



소인수로 분해하기

▪ 문제

양의 정수 한 개가 입력되었을 때, 그 수를

소인수로 분해하여 출력하는 프로그램을 작

성하시오.

▪ 입력

양의 정수 한 개가 입력된다. (2이상)

▪ 출력

그 수를 소인수로 분해하여 오름차순으로

출력한다.

▪ 입력과 출력의 예

▪ 프로그램

67

int main() {

    int n;

    scanf("%d", &n);

    int d=2;

    do {

        if(n%d==0) {

            printf("%d ", d);

            n=n/d;

        }

        else

            d++;

    }

    while(d<=n);

}

입력 예 출력 예

420 2 2 3 5 7

2  420

2  210

3  105

5    35

7     7

1



중첩된 while

▪ 중첩된 while

• 들여쓰기를 사용하여 반복 내용의 시

작과 끝을 명확히 하자!

▪ 00:00 부터 ~ 05:59 까지 시간 출력

68

while(반복조건1) {

    while(반복조건2) {

    }

}

#include <stdio.h>

int main() {

    puts("clock time");

    int hour=0;

    while(hour < 6) {

        int min = 0;

        while(min < 60) {

            printf("%02d:%02d ", hour, min);

            min++;

        }

        printf("\n");

        hour++;

    }

}



반복문 - for

▪ for문 형식

▪ 실행순서

1) ①초기식 ②조건식 ③반복할 문장 ④증감식

2) ②조건식 ③반복할 문장 ④증감식

3)           :

4) ②조건식

▪ 예시

▪ 실행순서

69

for(①초기식; ②조건식; ④증감식) {

    ③반복할 문장;

}

for(int i=0; i<3; i++) {

    printf("%d\n", i);

}

①초기식 ②조건식 ③반복문장 ④증감식 i

i=0 i<3 printf(0) i++ 1

i<3 printf(1) i++ 2

i<3 printf(2) i++ 3

i<3



반복문 - for

▪ 5회 반복 방법1

▪ 출력

▪ 5회 반복 방법2

▪ 출력

70

for(int i=0; i<5; i++) {

    printf("%d\n", i);

} 

for(int i=1; i<=5; i++) {

    printf("%d\n", i);

}

0

1

2

3

4

1

2

3

4

5



반복문 - for

▪ 1부터 15사이 3의 배수 출력

▪ 출력

▪ 10부터 1까지 카운트다운

▪ 출력

71

#include <stdio.h>

int main() {

   for(int i=3; i<=15; i=i+3) 

        printf("%d", i);

} 

3

6

9

12

15

#include <stdio.h>

int main() {

   puts("Rocket launch countdown…");

   for(int i=10; i>=1; i--) 

        printf("%d ", i);

} 

Rocket launch countdown…

10 9 8 7 6 5 4 3 2 1



반복문 – for 문과 while 문 비교

▪ for 문 ▪ while 문

72

// 1부터 5까지의 합계를 구하는 프로그램

#include <stdio.h>

int main() {

int sum = 0;

int n;

   for(n=1; n<=5; n++) {

      sum= sum + n;

      printf("sum of 1 to %d: %2d \n", n, sum);

   }

   return 0;

}

// 1부터 5까지의 합계를 구하는 프로그램

#include <stdio.h>

int main() {

   int sum = 0;

   int n;

   n=1;

   while(n<=5) {

      sum = sum + n;

      printf("sum of 1 to %d: %2d \n", n, sum);

      n++;

   }

   return 0;

}



3의 배수 게임

▪ 문제

3의 배수 게임을 하던 정올이는 3의 배수

게임에서 작은 실수를 계속해서 벌칙을 받

게 되었다.

3의 배수 게임의 왕이 되기 위한 수련 프로

그램을 작성해 보자.

** 3의 배수 게임이란?

여러 사람이 순서를 정해 순서대로 수를

부르는 게임이다.

만약 3의 배수를 불러야 하는 상황이라면,

그 수 대신 "박수"를 친다.

▪ 입력

첫 줄에 하나의 정수 n이 입력된다.

(n은 50미만의 자연수이다)

▪ 출력

1부터 n까지 순서대로 공백을 두고 수를

출력하는데, 3의 배수(3, 6, 9 ...)인 경우 수

대신 영문 대문자 X 를 출력한다.

▪ 입력과 출력의 예

73

입력 예 출력 예

7 1 2 X 4 5 X 7



약수의 합 구하기

▪ 문제

한 정수 n을 입력 받아서 n의 모든 약

수의 합을 구하는 프로그램을 작성하시

오.

예를 들어 10의 약수는 1, 2, 5, 10이

므로 이 값들의 합인 18이 10의 약수

의 합이 된다.

▪ 입력

첫번째 줄에 정수 n이 입력된다.

 (단, 1 <= n <= 100,000)

▪ 출력

n의 약수의 합을 출력한다

▪ 입력과 출력의 예

▪ 고찰

n의 약수들을 어떻게 알아낼 수 있을까?

74

입력 예 출력 예

5 6

입력 예 출력 예

10 18



약수의 합 구하기

▪ 문제

한 정수 n을 입력 받아서 n의 모든 약

수의 합을 구하는 프로그램을 작성하시

오.

예를 들어 10의 약수는 1, 2, 5, 10이

므로 이 값들의 합인 18이 10의 약수

의 합이 된다.

▪ 입력

첫번째 줄에 정수 n이 입력된다.

 (단, 1 <= n <= 100,000)

▪ 출력

n의 약수의 합을 출력한다

▪ 답안 예시

▪ 고찰

n의 약수들을 어떻게 알아낼 수 있을까?

75

입력 예 출력 예

5 8

입력 예 출력 예

10 18

#include <stdio.h>

int main() {

    int n;

    scanf("%d", &n);

    int ans = 0;

    

    printf("%d\n", ans);

    return 0;

}

for(int i=1; i<=n; i++) {

    if(n%i == 0)

        ans = ans + i;

}



공약수 찾기

▪ 문제

• 입력된 두 자연수의 공약수를 모두 출력하는

프로그램을 작성하시오.

▪ 입력

• 첫 번째 줄에 두 자연수 a와 b가 공백으로 분

리되어 입력된다.

(1 ≤ a, b ≤ 2,100,000,000)

▪ 출력

• a와 b의 공약수를 작은 수부터 큰 수 순서로

공백으로 분리하여 출력한다.

▪ 예시

8 24

1 2 4 8

▪ 프로그램

#include <stdio.h>

int main() {

    int a, b;

    scanf("%d %d", &a, &b);

    

}

int main() {

    int a, b;

    scanf("%d %d", &a, &b);

    int min;

    if(a>b) min=b;

    else    min=a;

    int d = 1;

    while(d <= min) {

        if(a%d==0 && b%d==0)

            printf("%d ", d);

        d++;

    }

}

for(int d=1; d<=a && d<=b; i++) {

    if(a%d==0 && b%d==0)

        printf("%d ", d);

}



반복문 – 중첩된 for

1) 한 학급 1번 부터 30번까지 출

력한다.

2) 열 개 학급에 대하여 출력한다.

3) 세 개 학년에 대하여 출력한다.

77

int main() {

    for(int c=1; c<=10; c++) {

        printf("[%d반]\n", c);

        for(int n=1; n<=30; n++) {

            printf("%4d ", n);

        }

        printf("\n");

    }

}

int main() {

    for(int n=1; n<=30; n++) {

        printf("%4d ", n);

    }

}



반복문 – 중첩된 for

▪ 중첩된 for 문을 이용하여 구구단 출력하기

78

#include <stdio.h>

int main() {

   for(int d=1; d<=5; d++) {  // 1단부터 5단까지 

      printf(" %d 단\n", d);

      for(int x=1; x<=9; x++) {      // x1부터 x9까지 

         printf("%d x %d = %2d \n", d, x, d*x);

      }

      printf("\n");

   }

   return 0;

}



반복문 – 중첩된 for

▪ 연습문제

삼각형의 밑변 길이 정수 a를 입력 받아 중첩

된 반복문을 이용하여 아래 그림과 같은 직

각 삼각형 모양을 출력하는 프로그램을 작성

하시오.

▪ 정답

79

*

**

***

****

*****

******

*******

#include <stdio.h>

int main() {

}

int main(void) {

int a;

scanf("%d", &a);

for(int n=1; n<=a; n++) {

for(int s=1; s<=n; s++) {

printf("*");

}

printf("\n");

}

}

1개

2개

3개

4개

5개

:

a개



반복문 – 중첩된 for

▪ 연습문제

삼각형의 밑변 길이 정수 a를 입력 받아 중첩

된 반복문을 이용하여 아래 그림과 같은 직

각 삼각형 모양을 출력하는 프로그램을 작성

하시오.

▪ 정답

80

#include <stdio.h>

int main() {

}

*

     **

    ***

   ****

  *****

******

*******

#include <stdio.h>

int main(void) {

int a;

scanf("%d", &a);

for(int n=1; n<=a; n++) {

for(int s=1; s<=a-n; s++) {

printf(" ");

}

for(int s=1; s<=n; s++) {

printf("*");

}

printf("\n");

}

}

공백?+별n개=a개

∴ ? = a-n

#include <stdio.h>

int main(void) {

    int a;

    scanf("%d", &a);

    for(int n=1; n<=a; n++) {

        for(int s=1; s<=a; s++) {

            if(s<=a-n) // a-n개의 공백

                printf(" ");

            else

                printf("*");

        }

        printf("\n");

    }

}



중첩된 for문 활용

▪ 연습문제

삼각형의 밑변 길이 정수 a를 입력 받아 중첩된 반복문을 이용하여 아래 그림과 같은 직각 삼각형

모양을 출력하는 프로그램을 작성 하시오.

▪ 입력설명

첫 번째 줄에 자연수 n이 입력된다. (1 ≤ n ≤ 15)



중첩된 for문 활용

▪ 연습문제

삼각형의 밑변 길이 정수 a를 입력 받아 중첩된 반복문을 이용하여 아래 그림과 같은 직각 삼각형

모양을 출력하는 프로그램을 작성 하시오.

▪ 입력설명

첫 번째 줄에 자연수 n이 입력된다. (1 ≤ n ≤ 15)



    // a-1번 줄부터 1번줄까지 줄번호 감소

for(j=a-1; j>=1; j--) {  

        // 공백을 a-j개 그림

for(i=1; i<=a-j; i++) 

            printf(" ");

            

        // 별을 j*2-1개 그림

for(i=1; i<=j*2-1; i++) 

            printf("*");

        printf("\n");

    }

}

#include <stdio.h>

int main() {

    int a;

    scanf("%d", &a);

    int i, j;

    // 1번줄 부터 a번 줄까지 줄번호 증가

for(j=1; j<=a; j++) { 

        // 공백을 a-j개 그림

for(i=1; i<=a-j; i++) 

            printf(" ");

            

        // 별을 j*2-1개 그림

for(i=1; i<=j*2-1; i++) 

            printf("*");

        printf("\n");

    }



제어문 – break

▪ break 문

• switch, for, while, do ~ while문의 영역

을 빠져 나오기 위해 사용

• 가장 가까운 루프를 벗어난다.

▪ 사용 예

• 1+2+3+···+n 의 합이 처음으로 100이

상이 될 때, 그 때의 합과 n을 구하는 프

로그램을 작성하시오.

84

#include <stdio.h>

int main() {

   int sum=0, n;

   for(n=1; true; n++) {

      sum = sum + n;

      if(sum >= 100)

         break;

   }

   printf("n: %d, sum: %d \n", n, sum);

   return 0;

}



소수 판별

▪ 문제

3 이상의 자연수(n)가 입력되었을 때, 

소수 여부를 판별하는 프로그램을 작성

해 보자.

(3 ≤ n ≤ 1,000,000)

▪ 입력과 출력 예시

▪  프로그램

85

#include <stdio.h>

int main() {

   int n;

   scanf("%d", n);

   

   for(d=2; d<n; d++)  {

      if(n%d==0) break;

   }

   if(d<n) printf("composite");

   else    printf("prime");

}

입력 예 출력 예

41 prime

111 composite



제어문 – continue

▪ continue 문

• 반복문 내에서 사용되며, 남겨진 반

복내용을 중단하고 다음 반복을 시작

한다.

▪ 사용 예

• 1부터 20까지의 정수 중에서 홀수만

을 출력하시오. (for, continue 문

을 사용할 것.)

86

#include <stdio.h>

int main() {

   int i;

   for(i=1; i<=20; i++)  {

      if(i%2==0)

         continue;

      printf("%3d ", i);

   }

   return 0;

}



최대공약수와 최소공배수

▪ 최대공약수

• Greatest Common Divisor, GCD

• 공약수: 여러 수의 공통된 약수

• 최대공약수: 여러 수의 공약수 중

최대인 수

• G = gcd(30, 42) = 6

• L = lcm(30, 42) = 210

▪ 최소공배수

• Lowest Common Multiple, LCM

• 공배수: 여러 수의 공통된 배수

• 최소공배수: 공배수 중 최소인 수

• A = 30, B = 42

• A × B = G × L

• 30 × 42 = 6 × 210

87



최대공약수 구하기

▪ 공약수 탐색 전략

• a < b 조건 이용

• 공약수는 1 부터 a 사이에 존재

• a부터 1순서로 탐색

▪ 실행결과

▪ 소스코드

88

int main() {

    int a, b;

    scanf("%d %d", &a, &b);

    printf("test at ");

    for(int i=a; i>=1; i--) {

        printf("%d ", i);

        if(a%i==0 && b%i==0) {

            printf("\nfound: %d\n", i);

            break;

        }

    }

}



최대공약수 구하기

▪ 문제

두 수 a, b를 입력 받아 최대공약

수를 출력하는 프로그램을 작성하

시오.

예를 들어, 30과 42의 최대공약수

는 6이다.

▪ 고찰

• while 문이 적합한가?

• do … while 문이 적합한가?

▪ 프로그램

89

30 42

6

2  30  42

3  15  21

5   7

#include <stdio.h>

int main() {

    int a, b;

    scanf("%d %d", &a, &b);

    int d=2, G=1;

    printf("%d\n", G);

}

while(d<=a && d<=b) {

    if(a%d==0 && b%d==0) {

        //printf("[%d] ", d);

        G = G*d;

        a=a/d;

        b=b/d;

    } 

    else

        d++;

} 



최대공약수 구하기 <유클리드 호제법>

90

a b r

a b 몫(s), 나머지(r) a b r

<유클리드 호제법>

  a와 b의 최대공약수는

  b과 r의 최대공약수와 같다.



최대공약수 구하기 <유클리드 호제법>

▪ 왜?

• A=1112, B= 695 일때,

• A, B는 둘다 최대공약수(G)의 배수이

다.

• 1112 mod 695 = 417

• 695 mod 417 = 278

• 417 mod 278 = 139

• 278 mod 139 = 0

• 계산 중간결과인 417, 278, 139 도

모두 G의 배수이다.

▪ 그림으로 이해

• 작은 녀석의 배수로

큰 녀석을 잘라내면

남는 녀석도 G의 배수

가 된다.

91



최대공약수 구하기 <유클리드 호제법>

92

a    b

a    b
r    
b    a

b    a
     r
a    b

a    b
r



최대공약수 구하기

▪ 문제

두 수 a, b를 입력 받아 최대공약수를

출력하는 프로그램을 작성하시오.

예를 들어, 12과 16의 최대공약수는 4

이다.

▪ 고찰

• while 문이 적합한가?

• do … while 문이 적합한가?

▪ 유클리드 호제법 순서도

93

12 16

4



최대공약수 구하기 (유클리드 호제법이용)

▪ while 문으로 구현 ▪ do … while 문으로 구현

94

#include <stdio.h>

int main() {

    int a, b, r;

    scanf("%d %d", &a, &b);

    while(1) {

    }

}

#include <stdio.h>

int main() {

int a, b, r;

scanf("%d %d", &a, &b);

}

r = a % b;

        if(r == 0) {

            printf("%d", b);

            break;

        }

        a = b;

        b = r;

do {

r = a % b;

a = b;

b = r;

}

while(r != 0);

// b가 a로 이동했으니 a를 출력해야 함.

printf("%d", a);



최대공배수 구하기

▪ 문제

두 수 a, b를 입력 받아 최대공배수를

출력하는 프로그램을 작성하시오.

예를 들어, 6과 8의 최소공배수는 24

이다.

▪ 전략

• 방금 전에 만든 최대공약수 프로그램

을 약간 개조하자!

95

6 8

24

• A × B = G × L



함수

▪ 함수(function) 란?

• 특정한 처리·기능을 수행하는 코드를

하나로 묶어 둔 것.

• 특정 인자를 받아 결과값을 반환하는

개 체 를 말 하 기 때 문 에 서 브 루 틴

(subroutine)이라고도 한다.

▪ 함수 사용의 효과

• 코드들을 기능 단위로 묶을 수 있기

때문에 프로그램을 이해하고 만들기

쉽게 한다.

▪ 함수의 종류

• 내장 함수

• 사용자정의 함수

• 매크로 함수

▪ 함수=프로시저=메소드

96



내장 함수

▪ 헤더파일의 종류

97

종류 기능 내장함수

stdio.h 표준 입출력 함수 등을 정의
printf( ), scanf( ), gets( ), getchar( ), 
puts( ), putchar( ), fgetc( ), fgets( ), fputc( ), 
fputs( ), fopen( ), fclose( ) 등

conio.h
직접 콘솔 입출력 함수 등을
정의

getch( ), getche( ), putch( ), cgets( ) 등

math.h 수학 함수와 매크로 정의
sin( ), cos( ), tan( ), exp( ), log( ), sqrt( ), 
abs( ), fabs( ), pow( ), fmod( ) 등

string.h 문자열 처리 함수 정의
strlen,(), strcat( ), strcpy( ), strcmp( ), 
strncat( ) 등

ctype.h 문자 검사 매크로 정의
isalpha( ),  islower( ), isupper( ), tolower( ), 
toupper( ) 등



사용자 정의 함수

▪ 형식 ▪ 예

98

[함수의 리턴형] 함수명([인수1,인수2…]) 

{

    문장1;

    문장2;

     …

     …

    문장n;

    [return] [리턴값]

}

[리턴형] 함수명 (인수)

int   main () {
    함수의 몸체

}

int add(int a, int b) {
   int sum = a + b;
   return sum;
}

char upper(char ch) {
    return ch-32;
}

함수의 몸체

인수

반환값
(리턴값)

다섯배

함수명



사용자 정의 함수

▪ 함수의 형태

• 인수

• 없는가?

• 있는가? 있다면 한 개인가, 두 개인가?

• 리턴값

• 없는가? 

• 있는가? (한 개만 리턴 가능)

• 다양한 형태의 함수 모양이 나올 수

있음

▪ 형태

99

인수 리턴 형태

X X
void func()
void func(void)

X O
int func()
double func(void)

O X
void func(int ar)
void func(char c)

O O
int func(int ar)
int func(int a, int b)



사용자 정의 함수

▪ Case1: 인수 X, 리턴값 X

• 기능: "Copyright" 출력

• 함수명: output

• 인수: 없음

• 리턴값: 없음

▪ 함수 구현

100

void output() {

   printf("---------------\n");

   printf(" function test\n");

   printf("---------------\n");

   return;

}



사용자 정의 함수

▪ Case2: 인수 O, 리턴 O

• 기능: x+y 값을 구한다

• 함수명: add

• 인수: x, y 2개

 x:int, y:int

• 리턴값: x+y

 리턴형: int

▪ 함수 구현

101

int add(int x, int y) {

   int sum = x + y;

   return sum

}



사용자 정의 함수

▪ 함수의 호출 ▪ 메모리에서 일어나는 일

• 지역변수는 함수 호출 시 생성 되고, 

함수가 종료되면 자동으로 파괴된다.

102

#include <stdio.h>

int add(int x, int y) {

   int sum = x + y;

   return sum;

}

int main() {

   int a=3, b=4;

   int sum=0;

   sum = add(a, b);

   printf("%d \n", sum);

}

소속 변수 값

main sum 0

b 4

a 3

소속 변수 값

add sum 7

y 4

x 3

7

copy



사용자 정의 함수

▪ 함수 구현

103

#include <stdio.h>

int add(int a, int b) {

   int sum = a + b;

   return sum;

}

int pow(int x, int y) {

   int r=1;

   for(int i=1; i<=y; i++)

      r = r*x;

   return r;

}

char upper(char ch) {

    return ch-32;

}

void output() {

   printf("---------------\n");

   printf(" function %cest\n", upper('t')); //함수호출

   printf("---------------\n");

   printf("2+3 = %d\n", add(2,3)); //함수호출

   printf("2^3 = %d\n", pow(2,3)); //함수호출

   return;

}

int main() {

   output();  //함수호출

}



104

Debugging: Step into [shift]+F7

step into
디버깅 기능을
통해 함수 호출

순서를
차례대로 관찰



사용자 정의 함수

▪ 함수 구현

105

#include <stdio.h>

void output() {

   printf("---------------\n");

   printf(" function %cest\n", upper('t'));

   printf("---------------\n");

   printf("2+3 = %d\n", add(2,3));

   printf("2^3 = %d\n", pow(2,3));

   return;

}

int main() {

   output();

}

int add(int a, int b) {

   int sum = a + b;

   return sum;

}

int pow(int x, int y) {

   int r=1;

   for(int i=1; i<=y; i++)

      r = r*x;

   return r;

}

char upper(char ch) {

    return ch-32;

}

int add(int a, int b);
int pow(int x, int y);
char upper(char ch);

함수의
프로토타입을
미리 알려준다



함수 만들기 연습

▪ 정수 k를 넘겨받아 별(*)을 k개

출력하는 함수 kstars(k)

▪ 왼쪽의 kstars(k)를 이용하여 *

로 삼각형 그리기

#include <stdio.h>

int main() {

    int n;

    scanf("%d", &n);

    

}

5

*

**

***

****

*****



함수 만들기 연습

▪ 두 실수 a, b값을 받아 두 수의

차이(절대값)를 반환하는 함수

▪ 두 자연수 a와 b를 입력 받아 ab

를 계산하는 함수

____ diff(____ a, ____ b) {

}

____ diff(____ a, ____ b) {

}



함수 만들기 연습

▪ 두 정수 a, b값을 받아 큰 수를

반환하는 max 함수

▪ 두 정수 a, b값을 받아 작은 수

를 반환하는 min 함수



가변인자 함수
#include <stdio.h>

#include <stdarg.h>    // va_list, va_start, va_arg, va_end가 정의된 헤더 파일

void printNumbers(int args, ...)  {  // 가변 인자의 개수를 받음, ...로 가변 인자 설정

    va_list ap;    // 가변 인자 목록 포인터

va_start(ap, args);    // 가변 인자 목록 포인터 설정

for (int i = 0; i < args; i++)  {   // 가변 인자 개수만큼 반복

        int num = va_arg(ap, int);    // int 크기만큼 가변 인자 목록 포인터에서 값을 가져옴

// ap를 int 크기만큼 순방향으로 이동

printf("%d ", num);           // 가변 인자 값 출력

}

    va_end(ap);    // 가변 인자 목록 포인터를 NULL로 초기화

printf("\n");    // 줄바꿈

}

int main() {

    printNumbers(1, 10);                // 인수 개수 1개

printNumbers(2, 10, 20);            // 인수 개수 2개

printNumbers(3, 10, 20, 30);        // 인수 개수 3개

printNumbers(4, 10, 20, 30, 40);    // 인수 개수 4개

return 0;

}



가변인자 함수

▪ 최소값을 알려주는 mins() ▪ 최대값을 알려주는 maxs()
#include <stdio.h>

#include <stdarg.h>

int mins(int args, ...) {

    va_list ap;

    va_start(ap, args);

    int M = va_arg(ap, int);

    for (int i=1; i < args; i++)  {

        int num = va_arg(ap, int);

        if(M > num) M = num;

    }

    va_end(ap);

    return M;

}

int main() {

    printf("%d\n", mins(2, 4, 3));

    printf("%d\n", mins(3, 8, 2, 6));

    printf("%d\n", mins(4, 9, 4, 6, 3));

    printf("%d\n", mins(5, 2, 4, 6, 1, 8));

}

#include <stdio.h>

#include <stdarg.h>

int mins(int args, ...) {

    va_list ap;

    va_start(ap, args);

    int M = va_arg(ap, int);

    for (int i=1; i < args; i++)  {

        int num = va_arg(ap, int);

        if(M > num) M = num;

    }

    va_end(ap);

    return M;

}

int main() {

    printf("%d\n", mins(2, 4, 3));

    printf("%d\n", mins(3, 8, 2, 6));

    printf("%d\n", mins(4, 9, 4, 6, 3));

    printf("%d\n", mins(5, 2, 4, 6, 1, 8));

}



매크로 함수

▪ 최대값, 최소값 함수 ▪ 매크로 함수의 장점

• 매크로 함수는 단순 치환만을 해주므로, 

인수의 타입을 신경 쓰지 않습니다.

• 함수 호출에 의한 성능 저하가 일어나

지 않으므로, 프로그램의 실행속도가

향상됩니다.

▪ 단점

• 원하는 결과를 얻는 정확한 매크로 함

수의 구현은 어려우며, 따라서 디버깅

또한 매우 어렵습니다.

• 매크로 함수의 크기가 증가하면 증가할

수록 사용되는 괄호 또한 매우 많아져

서 가독성이 떨어집니다.

#include <stdio.h>

#define MAX(a, b) ((a)>(b))? (a):(b)

#define MIN(a, b) ((a)<(b))? (a):(b)

int main() {

    int x=2, y=3;

    int m=MIN(x, y);

    int M=MAX(x, y);

    printf("m: %d, M: %d\n", m, M);

}



지역변수 / 전역변수

▪ 지역변수

• 함수 안에서 선언된 변수

• 해당 함수 안에서만 사용가능

• 초기값이 쓰레기 값이다

• 함수가 호출되면 생성되고 함수가 종

료되면 사라진다

• 동일한 이름의 전역/지역변수가 존재

하면 지역변수가 우선한다

• 스택에 저장

▪ 전역변수

• 함수 외부에서 선언된 변수

• 어느 함수에서든 사용가능

• 초기값이 0 이다

• 프로그램이 실행 중이면 항상 존재한

다

• 프로그램을 이해하기 어렵게 만드므

로 꼭 필요한 경우에만 사용하자

• 전역공간에 저장

112



지역변수 / 전역변수

▪ 지역변수 예시 ▪ 전역변수 예시

113

#include <stdio.h>

// add의 sum과 main의 sum은 동명이인

int add(int a, int b) {

   int sum = a + b;

   return sum;

}

int main(){

int sum=0;

add(1, 2);

printf("%d\n", sum);

}

#include <stdio.h>

// add의 sum과 main의 sum은 동일변수

int sum;

void add(int a, int b) {

   sum = a + b;

}

int main(){

add(1, 2);

printf("%d\n", sum);

}



팩토리얼 계산

114



#include <stdio.h>

int factorial(int n) {

return r;

}

int main() {

printf("6! = %d\n", factorial(6));

}

팩토리얼 계산

▪ 비 재귀적 해결

• ex) 팩토리얼 계산

▪ 답안

                   ?

115

#include <stdio.h>

int factorial(int n) {

int r=1;

//순서 뒤집어서 계산

for(int a=2; a<=n; a++) {

printf("%d x %d\n", r, a);

r = r * a;

}

return r;

}

int main() {

printf("6! = %d\n", factorial(6));

}

n! = n x (n-1) x (n-2) x … x 1

5! = 5 x 4 x 3 x 2 x 1 = 120

3! = 3 x 2 x 1 = 6

      



재귀함수

▪ 재귀함수

• 실행 도중 자기 자신을 호출(재귀 호출)

하는 함수

• ex) 팩토리얼 계산

▪ 함수 예시

• 탈출조건이 없으면 무한루프가 되므로 유의

116

int factorial(int n) {

if(n >= 2)

return n*factorial(n-1); 

else       

return 1;

}

// 3항 조건 연산자를 활용하여

// 아래와 같이 표현해도 동일한 효과

int factorial(int n) {

return (n>=2)? n*factorial(n-1) : 1;

}

5! = 5 x 4 x 3 x 2 x 1

5! = 5 x 4!

         4! =4x3!

               3!=3x2!

                    2!=2x1!

                         1!=1

      n×f(n-1)  … n≥2

      1       … n=1
f(n)



재귀함수

factorial(5)

계산과정

묘사

117



재귀함수

▪ 재귀함수 호출 관찰 ▪ 함수 예시

118

#include <stdio.h>

int fact(int n) {

if(n >= 2) {

printf("[%d x %d!\n", n, n-1);

int f = fact(n-1);

printf(" (%d!=%d)]\n", n-1, f);

return n*f;

}

else

return 1;

}

int main() {

printf("%d", fact(5));

}



연습문제

▪ 피보나치 수 찾기

• 첫째 항 및 둘째 항이 1이며, 그 뒤

의 모든 항은 바로 앞 두 항의 합인

수열

• 처음 여섯 항은 각각 1, 1, 2, 3, 5, 

8 이다.

• 숫자 K를 입력 받아 K번째에 해당하

는 피보나치 수를 출력하는 알고리즘

을 작성하시오.

▪ 함수 구현

119

int fibo(int n) {

}



재귀 함수 – 연습문제1

▪ 피보나치 수 찾기

• 첫째 항 및 둘째 항이 1이며, 그 뒤

의 모든 항은 바로 앞 두 항의 합인

수열

• 처음 여섯 항은 각각 1, 1, 2, 3, 5, 

8 이다.

• 숫자 K를 입력 받아 K번째에 해당하

는 피보나치 수를 출력하는 알고리즘

을 작성하시오.

▪ 함수 구현

120

int fibo(int n) {

}



재귀 함수 – 연습문제2

▪ 계단을 오르는 방법

• 계단을 한 번에 한 칸 또는 두 칸 만 오를

수 있다고 할 때 n 칸으로 되어 있는 계단

전체를 오르는 방법은 몇 가지가 있는가?

• 힌트1

• 1칸 계단: 1가지 방법

• 2칸 계단: 2가지 방법

• 3칸 계단은?

• 힌트2: n칸 계단에 오르는 방법

• n-2칸 까지 올라온 다음 두 칸 오른다 +

• n-1칸 까지 올라온 다음 한 칸 오른다

▪ 함수로 표현

121

예를 들어,

f(n) : n개의 계단일 때 오르는 방법의 수

f(1) = 1

f(2) = 2

f(3) = f(2) + f(1)

f(4) = f(3) + f(2)

f(5) = f(4) + f(3)

        :

f(n) = f(n-1) + f(n-2)



연습문제 풀이: 계단오르기

▪ 고찰

122

▪  점화식 표현

f(1) = 1

f(2) = 2

f(3) = 3

f(n) = f(n-2)+f(n-1)

계단 오르는 방법 방법 개수

⑴ ① ① 1 1

⑵
①+①

②

⑴+①

②

1

1
2

⑶
①+②

①+①+①, ②+①

⑴+②

⑵+①

1

2
3

⑷
①+①+②, ②+②

①+②+①, ①+①+①+①, ②+①+①

⑵+②

⑶+①

2

3
5

⑸
①+②+②, ①+①+①+②, ②+①+②

①+①+②+①, ②+②+①, ①+②+①+①, …

⑶+②

⑷+①

3

5
8

⑹
생략

생략

⑷+②

⑸+①

5

8
13



연습문제 풀이: 계단오르기

▪ 함수로 표현

123

#include <stdio.h>

int count(int stairs) {

}

int main() {

   int stairs;

   scanf("%d", &stairs);

   printf("%d\n", count(stairs));

}

if(stairs == 1)

    return 1;

else if(stairs == 2)

    return 2;

else

    return count(stairs-2) + count(stairs-1);

예를 들어,

f(n) : n개의 계단일 때 오르는 방법의 수

f(1) = 1

f(2) = 2

f(3) = f(2) + f(1)

f(4) = f(3) + f(2)

f(5) = f(4) + f(3)

        :

f(n) = f(n-1) + f(n-2)



배열

▪ 배열

• 같은 형식의 여러 데이터를 하나의

변수에 긴 띠 모양으로 저장하여 사

용하는 자료의 집합체

• 줄줄이 연결된 타입이 동일한 변수들

의 집합

▪ 선언

• 형식

• 선언 예

kor변수 5개 만듦

kor[0] ~ kor[4]

• 배열의 구조

• 0번 인덱스부터 시작됨에 유의

124

데이터형 배열명[원소의 수]

int kor[5];

kor[0] kor[1] kor[2] kor[3] kor[4]



배열

▪ 대입

kor[0] = 60;

kor[1] = 60;

kor[2] = 60;

kor[3] = 60;

kor[4] = 60;

▪ 반복문 이용한 대입

for(i=0; i<5; i++)

    kor[i] = 60;

▪ 초기화

int a[5] = {3,2,7,6,9};

int b[] = {3,6,5,4};

int c[5] = {5,8,3};

int d[5] = {4,};

static int e[5];

125



배열

▪ 배열의 순회1 ▪ 배열의 순회2

126

#include <stdio.h>

int main() {

  int a[10]={1,3,7,6,4,8,9,12,2,10};

  // 0번부터 시작하여 n-1에서 끝남에 유의

  for(int i=0; i<10; i++) {

    printf("%4d", a[i]);

  }

  return 0;

}

#include <stdio.h>

int main() {

  int a[10]={1,3,7,6,4,8,9,12,2,10};

  int i;

  // 0번부터 시작하여 n-1에서 끝남에 유의

  i=0;

  while(i<10) {

    printf("%4d", a[i]);

    i++;

  }

  return 0;

}



배열

▪ 배열의 합 ▪ 피보나치수

127

#include <stdio.h>

int main() {

  int i, sum=0;

  int a[10]={1,3,7,6,4,8,9,12,2,10};

  for(i=0; i<10; i++) {

    sum = sum + a[i];

  }

  printf("sum = %d\n", sum);

}

#include <stdio.h>

int main() {

  int i, fibo[10]={1,1};

  for(i=2; i<10; i++) {

    fibo[i]=fibo[i-1]+fibo[i-2];

  }

  for(i=0; i<10; i++) {

    printf("%4d\n", fibo[i]);

  }

}



입력된 자연수 개수 출력하기

▪ 문제

1~6 범위의 n개의 자연수가 입력되었을 때, 각

수가 입력된 개수를 출력하는 프로그램을 작

성해 보자.

▪ 입력

• 첫 줄에 자연수의 갯수 n이 입력된다. 

   (1 <= n <= 1,000,000)

• 두 번째 줄에 n 개의 자연수가 공백을 두고

입력된다.

▪ 출력

1~6까지 각 자연수가 입력된 개수를 공

백으로 분리하여 출력한다.

▪ 입력과 출력의 예

128

입력 예 출력 예

10 

4 3 2 5 3 1 4 6 2 3

1 2 3 2 1



입력된 자연수 개수 출력하기(풀이)

▪ 소스코드

129

#include <stdio.h>

int main() {

    // 몇 번 입력되었는지 저장하기 위한 배열

int cnts[7] = {0,};

    int n, s;

    scanf("%d", &n);

    for(int i=0; i<n; i++) {  // n회 반복

scanf("%d", &s);  // 입력된 숫자 s

        cnts[s]++;  // 입력된 숫자 카운트

    }

    // 1부터 6까지 입력횟수 결과출력

for(int i=1; i<=6; i++)

        printf("%d ", cnts[i]);

}

▪ cnts 배열

▪ 4 입력

▪ 3 입력

▪ 핵심코드

• cnts[s]++;  //s번 idx의 값을 증가 

idx 0 1 2 3 4 5 6

val 0 0 0 0 0 0 0

idx 0 1 2 3 4 5 6

val 0 0 0 0 1 0 0

idx 0 1 2 3 4 5 6

val 0 0 0 1 1 0 0



숫자 목록에서 수 찾기

▪ 문제

n개로 이루어진 정수 목록에서 원하는 수

의 위치를 찾으시오.

단, 입력되는 정수 목록에 같은 수는 없다.

▪ 입력

첫 줄에 한 정수 n이 입력된다.

(2 <= n <= 100,000)

둘째 줄에 n개의 정수가 공백으로 구분되

어 입력된다.

(입력되는 모든 정수는 21억 보다 작다)

셋째 줄에는 찾고자 하는 수가 입력된다.

▪ 출력

찾고자 하는 원소의 위치를 출력한다.

없으면 -1을 출력한다.

▪ 입력과 출력의 예

130

입력 예 출력 예

8 
1 2 3 5 7 9 11 15
11

7



숫자 목록에서 수 찾기(풀이)

131

▪ nums 배열

▪ 데이터 입력 후

idx 0 1 2 3 4 5 6 7 8

val x

idx 0 1 2 3 4 5 6 7 8

val x 1 2 3 5 7 9 11 15

#include <stdio.h>

int main() {

    int n;  // 입력되는 자료 개수

scanf("%d", &n);        

    int nums[n+1];     // 자료가 저장되는 공간

for(int i=1; i<=n; i++)    // n회 반복

scanf("%d", &nums[i]);

    int s;  // 찾을 수

scanf("%d", &s);

    for( … ) {  // n회 반복

if( … ) {    //nums배열에서 s를 찾으면,

            printf("%d\n", i);  // 그 위치를 출력

            return 0;

        }

    }

    printf("%d\n", -1);

}



최댓값 찾기

▪ 문제

9개의 서로 다른 자연수가 주어질 때, 이들

중 최댓값을 찾고 그 값이 몇 번째 수 인지를

구 하 는 프 로 그 램 을 작 성 하 시 오 .   

예를 들어, 서로 다른 9개의 자연수가 각각 3, 

29, 38, 12, 57, 74, 40, 85, 61 라면, 이

중 최댓값은 85이고, 이 값은 8번째 수이다

▪ 입력

첫째 줄부터 아홉째 줄까지 한 줄에 하나의

자연수가 주어진다. 주어지는 자연수 는 100

보다 작다.

▪ 출력

첫째 줄에 최댓값을 출력하고, 둘째 줄에 최

댓값이 몇 번째 수인지를 출력한다.

▪ 입력과 출력의 예

▪ 출처

한국정보올림피아드(2007 지역본선 초등부)

132

입력 예 출력 예

3 
29 
38 
12 
57 
74 
40 
85 
61

85
8



최댓값 찾기(풀이)

133

#include <stdio.h>

int main() {

    int nums[10];

    for(int i=1; i<=9; i++)

        scanf("%d", &nums[i]);

    

    // 첫 번째 원소를 최댓값이라고 가정하고 시작

int max = nums[1]; 

    int idx = 1;

    

    for( … ) {

        if( … ) {  // 더 큰 수를 발견하면,

            max = nums[i];   

            idx = i;

        }

    }

    printf("%d\n", max);  // 최댓값 출력

printf("%d\n", idx);  // 몇번째 수인지 출력

}

▪ nums 배열

▪ 데이터 입력 후

▪ 최대값 탐색

idx 0 1 2 3 4 5 6 7 8 9

val x

idx 0 1 2 3 4 5 6 7 8 9

val x 3 29 38 12 57 74 40 85 61

#include <stdio.h>

int main() {

    int nums[10];

    for(int i=1; i<=9; i++)

        scanf("%d", &nums[i]);

    

    // 첫 번째 원소를 최댓값이라고 가정하고 시작

int max = nums[1]; 

    int idx = 1;

    

    for(int i=2; i<=9; i++) {

        if(max < nums[i]) {  // 더 큰 수이면,

            max = nums[i];   

            idx = i;

        }

    }

    printf("%d\n", max);  // 최댓값 출력

printf("%d\n", idx);  // 몇번째 수인지 출력

}

max

3

max

29

max

38

max

38

max

57

max

74

max

74

max

85

max

85



2진수로 변환하기

▪ 문제

10진수 n이 입력되었을 때, 2진수로 변환해 출

력하는 프로그램을 작성해 보자.

▪ 입력

첫 줄에 10진수 n이 입력된다. 

(0 ≤ n ≤ 100,000,000)

▪ 출력

10진수를 2진수로 변환한 결과를 출력한다.

▪ 입력과 출력의 예

▪ 출처

정보과학 교과서 p.83

134

입력 예 출력 예

11 1011



2진수로 변환하기(풀이)

▪ 2진수 변환 ▪ 소스코드

135

#include <stdio.h>

int main() {

    int d[32];  // 변환결과를 저장할 공간

int n;

    scanf("%d", &n);

    int p=0; //0번 인덱스부터~

    do {

        ________;  //2로 나눈 나머지 저장

        _______;      //p 다음으로 이동

_______;      //2로 나눈 몫 계산     

    }

    while(n>0); //아직 0이 되지 않았다면 계속

// d배열의 p-1번 인덱스부터 역순으로 출력

for(int i=p-1; i>=0; i--)

        printf("%d", d[i]);

}

#include <stdio.h>

int main() {

    int d[32];  // 변환결과를 저장할 공간

int n;

    scanf("%d", &n);

    int p=0; //0번 인덱스부터~

    do {

        d[p]=n%2;   //2로 나눈 나머지 저장(key 

parts)

        p++;        //다음 인덱스로 증가

n=n/2;      // (key parts)

    }

    while(n>0); //아직 0이 되지 않았다면 계속

// 진수변환 결과물은 d배열에 역순으로 채워짐

// d배열의 p-1번 인덱스부터 역순으로 출력

for(int i=p-1; i>=0; i--)

        printf("%d", d[i]);

}

i 0 1 2 3 4 5 6 7 8

d[i] 0 0 1 0 1

p

2로 나눈 나머지 구하기



배열

▪ 에라토스테네스의 체 ▪ 소스코드

136

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

#include <stdio.h>

#define MAX  101

int main() {

  int cnt=0;

  int isPrime[MAX] = {1, 1, 0, };

  // 1: 소수아님, 0: 소수

for(int i=2; i<MAX; i++) {

    if(isPrime[i]==0) { // 현재수만 소수이고

      printf("%5d", i);

      cnt++;

      for(int j=i; j<MAX; j+=i) // 배수들은

         isPrime[j]=1;  // 소수아님으로 셋팅

}

  }

  printf("1~100 %d개의 소수를 찾아냄\n", cnt);

}

idx 0 1 2 3 4 5 6 …

val 1 1 0 0 0 0 0 …

isPrime[]



SWAP

▪ 두 변수 내용물을 서로 교환하는

연산

▪ 잘못된 구현

137

#include <stdio.h>

int main() {

   int a=5, b=7;

   printf("%d %d\n", a, b);

   a=b;

   b=a;

   printf("%d %d\n", a, b);

   return 0;

}



SWAP

▪ 두 변수 내용물을 서로 교환하는

연산

▪ 임시 변수가 필요함.

▪ 올바른 구현

138

#include <stdio.h>

int main() {

   int a=5, b=7;

   printf("%d %d\n", a, b);

   int t=a;

   a=b;

   b=t;

   printf("%d %d\n", a, b);

   return 0;

}

1단계

2단계

3단계



SWAP

▪ 고급 구현

139

int main() {

   int a=5, b=7;

   printf("%d %d\n", a, b);

   SWAP(a, b);

   printf("%d %d\n", a, b);

   return 0;

}

#include <stdio.h>

// C++의 Generic과 참조자를 사용

template <class T> 

inline void SWAP(T& a, T& b)

{

T temp = a;

a = b;

b = temp;

}

제네릭과
참조자는 본

수업의 범위를
벗어나는

내용이므로
자세한 설명은

생략한다.



정렬 알고리즘

▪ 선택 정렬

• 각 회전마다 최소 값을 찾아 1번째

부터 차례대로 배열

• 1회전이 종료될 때 마다 가장 앞쪽부

터 차례대로 숫자가 결정됨

• 예

• 4 3 6 2 5 를 선택정렬

140

1회전 (첫 번째 숫자를 결정하기 위함)

2회전 (두 번째 숫자를 결정하기 위함)

3회전 (세 번째 숫자를 결정하기 위함)

4회전 (네 번째 숫자를 결정하기 위함), 5개를 정렬 하려면 4회전 필요



정렬 알고리즘

▪ 구현 ▪ 1회전

141

void selection_sort(int a[], int len)

{

    int i, j, t;

    for(i=0; i<len-1; i++) {

        for(j=i+1; j<len; j++)  {

            if(a[i] > a[j]) {

                t = a[i];

                a[i] = a[j];

                a[j] = t;

            }

        }

    }

}

i j

4 3 6 2 5

i j

3 4 6 2 5

i j

3 4 6 2 5

i j

2 4 6 5 5



정렬 알고리즘

▪ 구현 ▪ 2회전

142

void selection_sort(int a[], int len)

{

    int i, j, t;

    for(i=0; i<len-1; i++) {

        for(j=i+1; j<len; j++)  {

            if(a[i] > a[j]) {

                t = a[i];

                a[i] = a[j];

                a[j] = t;

            }

        }

    }

}

i j

2 4 6 3 5

i j

2 4 6 3 5

i j

2 3 6 4 5



정렬 알고리즘

▪ 구현 ▪ 3회전

▪ 4회전

143

void selection_sort(int a[], int len)

{

    int i, j, t;

    for(i=0; i<len-1; i++) {

        for(j=i+1; j<len; j++)  {

            if(a[i] > a[j]) {

                t = a[i];

                a[i] = a[j];

                a[j] = t;

            }

        }

    }

}

i j

2 3 6 4 5

i j

2 3 4 6 5

i j

2 3 4 6 5

i j

2 3 4 5 6



정렬 알고리즘

▪ 선택 정렬 테스트

144

#include <stdio.h>

// 길이가 len인 배열 a를 오름차순 정렬

void selection_sort(int a[], int len) {

    int i, j, t;

    for(i=0; i<len-1; i++) {

        for(j=i+1; j<len; j++) {

            if(a[i] > a[j]) {

                t = a[i];

                a[i] = a[j];

                a[j] = t;

            }

        }

    }

}

// 길이가 len인 배열 a의 모든 원소를 출력

void show_array(int a[], int len) {

    for(int i=0; i<len; i++)

        printf("%5d", a[i]);

    printf("\n\n");

}

int main() {

    int a[10] = {7, 5, 8, 1, 4, 9, 2, 10, 6, 3};

    show_array(a, 10);

    selection_sort(a, 10);

    show_array(a, 10);

    return 0;

}
Quiz) 만약 내림차순 정렬로 바꾸려면 

어느 곳을 수정하며 될까?



STL sort() 함수 사용하기

▪ sort() 함수의 사용

• C++의 STL 사용

• #include <algorithm> 필요

• sort(배열시작, 배열끝, [비교함수])

• 기본 비교함수는 내림차순

▪ 비교함수(규칙)

145

#include <stdio.h>

#include <algorithm>

using namespace std;

void show_array(int a[], int len) {

    for(int i=0; i<len; i++)

        printf("%5d", a[i]);

    printf("\n\n");

}

int main() {

    int a[10] = {7, 5, 8, 1, 4, 9, 2, 10, 6, 3};

    show_array(a, 10);

    sort(a, a+10);              // 오름차순 정렬

    show_array(a, 10);

    sort(a, a+10, desc_order);  // 내림차순 정렬

    show_array(a, 10);

    return 0;

}

// 오름차순용

bool asc_order(int a, int b) {

    return a < b;    // 뒤 쪽이 더 크게

}

// 내림차순용

bool desc_order(int a, int b) {

    return a > b;    // 앞 쪽이 더 크게

}



146

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <algorithm>

using namespace std;

#define LEN 100

void selection_sort(int a[], int len) {

    int i, j, t;

    for(i=0; i<len-1; i++) {

        for(j=i+1; j<len; j++) {

            if(a[i] > a[j]) {

                t = a[i];

                a[i] = a[j];

                a[j] = t;

            }

        }

    }

}

void show_array(int a[], int len) {

    for(int i=0; i<len; i++)

        printf("%5d", a[i]);

    printf("\n\n");

}

void rand_array(int a[], int len, int max) {

    srand(time(NULL));

    for(int i=0; i<len; i++)

        a[i] = rand() % max;

}

bool desc_order(int a, int b) {

    return a > b;

}

int main() {

    int a[LEN];

    rand_array(a, LEN, LEN*10);

    show_array(a, LEN);  // before sorting

    selection_sort(a, LEN);  // selection ASC sort

    show_array(a, LEN);      // after sorting

    sort(a, a+LEN, desc_order);  // DESC sort

    show_array(a, LEN);          // after sorting

    return 0;

}



정렬하여 k번째 수 찾기

▪ 문제

n개의 정수를 배열에 입력 받아 정렬한

뒤, k번째로 큰 숫자를 찾는 프로그램

을 작성하시오. 만약 네 개의 정수 1, 

2, 3, 4가 입력되었다면, 3번째로 큰

수는 2이다.

▪ 입력

첫 번째 줄에 입력 받을 자료의 개수 n

이 입력된다. 두 번째 줄부터 정수 n개

가 한 줄에 하나씩 차례대로 입력된다.

마지막 줄에는 k가 입력된다.

▪ 출력

입력된 자료들 가운데 k번째로 큰 숫자

를 출력한다.

▪ 입력과 출력의 예

▪ 고찰

이 문제를 풀려면 오름차순 정렬을 사

용해야 하는가? 내림차순 정렬을 사용

해야 하는가?

147

입력 예 출력 예

4 
1 2 3 4 
3

2



다차원 배열

▪ 2차원 배열의 선언

• 1차원 배열을 여러 개 겹쳐 놓은 것

• 행과 열의 평면 구조를 가진 배열

• 선언

• 선언 예

▪ 2차원 배열의 초기화

148

데이터형 배열명[행 수][열 수]

int a[4][5];

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]

a[3][0] a[3][1] a[3][2] a[3][3] a[3][4]

int a[2][3] = {{3, 2, 7}, {6, 9, 8}};

int b[2][3] = {5,8,3,7};

int c[2][3] = {4, };

int d[2][3] = { {3, }, {7,6,9} };

int e[][3] = { {3,2,6}, {7,6,9} };

3 2 7

6 9 8

5 8 3

7 0 0

4 0 0

0 0 0

3 0 0

7 6 9



다차원 배열

▪ 2차원 배열의 순회(행 우선) ▪ 2차원 배열의 순회(열 우선)

149

#include <stdio.h>

#define ROW 3

#define COL 4

int main() {

    int a[ROW][COL] = {

        {1,2,3,4},{5,6,7,8},{9,10,11,12} };

    for(int c=0; c<COL; c++) {     //열 순회

        for(int r=0; r<ROW; r++) { //행 순회

            printf("%4d", a[r][c]);

        }

        printf("\n");

    }

    return 0;

}

#include <stdio.h>

#define ROW 3

#define COL 4

int main() {

    int a[ROW][COL] = {

        {1,2,3,4},{5,6,7,8},{9,10,11,12} };

    for(int r=0; r<ROW; r++) {     //행 순회

        for(int c=0; c<COL; c++) { //열 순회

            printf("%4d", a[r][c]);

        }

        printf("\n");

    }

    return 0;

}

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5 6 7 8

9 10 11 12



격자판의 최댓값

▪ 문제

<그림1>과 9x9 격자판에 쓰여진 81개의 자연수

가 주어질 때, 이들 중 최댓값을 찾고 그 최댓값

이 몇 행 몇 열에 위치한 수인지 구하는 프로그

램을 작성하시오.

▪ 입력

첫째 줄부터 아홉째 줄까지 한 줄에 아홉 개씩

자연수가 주어진다. 주어지는 자연수는 100보다

작다.

▪ 출력

첫째 줄에 최대값을 출력하고, 둘째 줄에 최댓값

이 위치한 행 번호와 열번호를 빈칸을 사이에 두

고 차례로 출력한다. 최댓값이 두 개 이상인 경

우 행 숫자가 가장 작은 위치를 출력한다.

150

예를 들어, 왼쪽과 같이
81개의 수가 주어질
경 우 에 는 이 들 중
최댓값은 90이고 , 이
값 은 5 행 7 열 에
위치한다. 입력 예 출력 예

3 23 85 34 17 74 25 52 65
10  7 39 42 88 52 14 72 63
87 42 18 78 53 45 18 84 53
34 28 64 85 12 16 75 36 55
21 77 45 35 28 75 90 76  1
25 87 65 15 28 11 37 28 74
65 27 75 41  7 89 78 64 39
47 47 70 45 23 65  3 41 44
87 13 82 38 31 12 29 29 80

90
5 7

출처: 한국정보올림피아드(2007 지역예선 중고등부)



격자판의 최댓값

▪ 문제

151

#include <stdio.h>

#define ROW 9

#define COL 9

int a[ROW][COL];

void input() {

    for(int r=0; r<ROW; r++) 

        for(int c=0; c<COL; c++) {

            scanf("%d", &a[r][c]);

}

int main() {

    input();

    int mr, mc, max=-1;

    

    printf("%d\n", max);

    printf("%d %d\n", mr+1, mc+1);

    return 0;

}



투 포인터(Two Pointers)

▪ 개념

• 2개의 포인터를 활용하여 문자열이나 배열에서 원하는 값을 얻어내는 방법이다.

• 기본 탐색 방식(다중 반복)을 사용하면 시간 초과가 발생하는 경우 사용을 고려

해볼만 하다.

• 메모리와 시간 효율성을 높일 수 있다.

• 𝑂 𝑁3 , 𝑂 𝑁2  알고리즘을 𝑂 𝑁  알고리즘으로 바꿀 수 있다.



투 포인터(Two Pointers)

▪ 유형1 <범위 탐색>

• 10개의 자연수의 부분합이 5가 되는

경우의 수를 구하시오.

• 고전적 풀이법

3중 for 문을 이용하여 시작점, 끝점, 

두 지점의 합을 구하는 방식은

시작복잡도 𝑂 𝑁3 으로 너무 느림.

입력 예1 출력 예1

10 5
1 2 3 4 2 5 3 1 1 2

3

// 다중반복문을 이용한 해결

#include <iostream>

using namespace std;

int main() {

    int n, t;

    scanf("%d %d", &n, &t);

    int arr[n+1] = {0, };

    for(int i=1; i<=n; i++)

        scanf("%d", &arr[i]);

    int cnt=0;

    for(int a=1; a<=n; a++) {        // a: 시작점

        for(int b=1; b<=n; b++) {    // b: 끝점

            int sum=0;

            for(int c=a; c<=b; c++) { // a ~ b까지의 합 계산

                sum += arr[c];

            }

            if(sum == t) {

                cnt++;

                printf("[%d, %d]\n",a,b);

            }

        }

    }

    cout << cnt;

}



투 포인터(Two Pointers)

▪ 유형1 <범위 탐색>

• 10개의 자연수의 부분합이 5가 되는

경우의 수를 구하시오.

• 고전적 풀이법

3중 for 문을 이용하여 시작점, 끝점, 

두 지점의 합을 구하는 방식은

시작복잡도 𝑂 𝑁3 으로 너무 느림.

입력 예1 출력 예1

10 5
1 2 3 4 2 5 3 1 1 2

3

# 다중반복문을 이용한 해결

n, t = map(int, input().split())

# 1번 인덱스부터 시작하기 위해 앞에 0 추가

arr = [0] + list(map(int, input().split()))

cnt = 0

for a in range(1, n + 1):          # 시작점

for b in range(1, n + 1):      # 끝점

total = 0

        for c in range(a, b + 1):  # a ~ b까지의 합

total += arr[c]

        if total == t:

            cnt += 1

            print(f"[{a}, {b}]")

print(cnt)



투 포인터(Two Pointers)

▪ 유형1 <범위 탐색>

빠른 테크닉

• start, end라는 두 개의 포인터를 사용

• start는 부분배열의 앞 쪽을 가리키는 인덱스, 

end는 부분배열의 뒤쪽을 가리키는 인덱스

• 맨 처음에 두 포인터는 0에서 시작하며 항상

start<=end를 만족해야 함.

• 그리고 매 순간마다 부분 배열의 합과 구해야 하

는 값을 비교하여 포인터를 이동

① 부분 배열의 합 >= 구해야하는 값

start를 오른쪽으로 한 칸 이동하여 부분합 배

열의 크기를 감소시킵니다.

② 부분 배열의 합 < 구해야하는 값

end를 오른쪽으로 한 칸 이동하여 부분합 배열

의 크기를 증가시킵니다.

▪  

n(개수), arr(데이터 배열), s(start), e(end), t(목표값), 

sum(부분합, [s ~ e) 인덱스 사이 부분배열의 합)

while True:

    if end == n and sum < t:

        break

    if sum ≥ t: #넘치면 빼고(축소)

        sum ← sum - arr[start]

        start ← start + 1

    else:  #모자라면 추가(확장)

        sum ← sum + arr[end]

        end ← end + 1

    if sum == t:

        count ← count + 1



투 포인터(Two Pointers)

▪ 유형1 <범위 탐색>

부분배열의 합이 원하는 값보다 작으므로
end 증가

부분배열의 합이 5이상이므로
start를 증가

원하는 값이 되었으므로
카운터 증가

부분배열의 합: [s ~ e) 인덱스 사이 합



투 포인터(Two Pointers)

▪ C++ 구현 ▪ 파이썬 구현
n, t = map(int, input().split())

arr = list(map(int, input().split()))

cnt = 0

sum_ = 0

s = 0

e = 0

while True:

    if e == n and sum_ < t:

        break

    if sum_ >= t:

        sum_ -= arr[s]

        s += 1

    else:

        if e < n:

            sum_ += arr[e]

            e += 1

    if sum_ == t:

        cnt += 1

print(cnt)

#include <iostream>

using namespace std;

int main() {

    int n, t;

    scanf("%d %d", &n, &t);

    int arr[n];

    for(int i=0; i<n; i++)

        scanf("%d", &arr[i]);

    int cnt=0, sum=0, s=0, e=0;

    while(true) {

        if (e == n && sum < t) break;

        if(sum >= t)

            sum -= arr[s++];

        else if(sum < t)

            sum += arr[e++];

        if(sum == t) cnt++;

    }

    printf("%d", cnt);

}



투 포인터(Two Pointers)

▪ 유형2 <합 구하기>

• 작은 수부터 큰 수로 정렬된 배열

arr와 숫자 target가 주어진다.

• 이 배열 내에서 숫자 두 수의 합이

target인 그 두 수의 인덱스를 출력

하시오. 

• 2중 반복문을 사용하면 time out 되

도록 문제가 설계됨.

입력 예1 출력 예1

7 20
2 4 6 9 16 20 22 

1 4

// 다중 반복문 사용하여 느린 방법

#include <iostream>

using namespace std;

int main() {

    int n, t;

    scanf("%d %d", &n, &t);

    int arr[n] = {0, };

    for(int i=0; i<n; i++)

        scanf("%d", &arr[i]);

    int sum=0;

    int a=0, b=n-1;

    for(int a=0; a<n; a++) {

        for(int b=0; b<n; b++) {

            if(a!=b && a<b && arr[a]+arr[b] == t) {

                printf("%d %d\n", a+1, b+1);

                return 0;

            }

        }

    }

}



투 포인터(Two Pointers)

▪ 유형2 <합 구하기>

• 투 포인터 활용
idx 0 1 2 3 4 6 7

arr 2 4 6 9 16 20 22

s e

#include <iostream>

#include <vector>

using namespace std;

int main() {

    int n, t;

    cin >> n >> t;

    vector<int> arr(n);

    for(int i = 0; i < n; i++)

        cin >> arr[i];

int s = 0, e = n - 1;

    int sum;

    while (s <= e) { // 두 포인터가 만날때까지

        sum = arr[s] + arr[e];

        if (sum < t)      s++;

        else if (sum > t) e--;

        else              break;

    }

    if(sum==t) cout << s+1 << " " << e+1 << endl;

    else       cout << -1 << endl;

}

idx 0 1 2 3 4 6 7

arr 2 4 6 9 16 20 22

s e

idx 0 1 2 3 4 6 7

arr 2 4 6 9 16 20 22

s e

• arr[s]+arr[e] > t(20) 이면, e가 이동

• arr[s]+arr[e] < t(20) 이면, s가 이동

• 초기값 s=0, e=n-1

7 20
2 4 6 9 16 20 22
2 5

7 21
2 4 6 9 16 20 22
-1



슬라이딩 윈도우 (Sliding Window)

▪ 개요

• 연속적인 구간을 다루는 문제애서 매

우 강력한 도구

• 특히 최대값, 최소값, 합 등을 구할

때 성능상 큰 이점을 제공

▪ 필요 상황

• 배열 또는 문자열에서 연속된 구간을

다루고

• 그 구간의 합, 길이, 조건 만족 여부

등을 구해야 할 때

• 특히 고정 길이(K) 또는 조건 기반

가변 길이일 때



슬라이딩 윈도우 (Sliding Window)

▪ 기본 알고리즘

1.초기 윈도우 설정:

• 처음 K개의 원소로 이루어진 윈도우(구

간)를 만든다.

sum = arr[0] + arr[1] + ... + arr[K-1]

2.윈도우 이동:

• i=K부터 배열 끝까지 반복:

• 맨 앞 원소 제거 (arr[i-K])

• 새 원소 추가 (arr[i])

• sum = sum - arr[i-K] + arr[i]

• 윈도우를 오른쪽으로 한 칸씩 슬라이딩

하면서 합을 갱신

3.각 단계에서 원하는 값을 계산:

• 최댓값, 최솟값, 조건 만족 여부 등



슬라이딩 윈도우 (Sliding Window)

▪ 알고리즘 C++ 구현 ▪ 알고리즘 파이썬 구현

def max_k_sum(arr, k):

    window_sum = sum(arr[:k])

    max_sum = window_sum

    for i in range(k, len(arr)):

        window_sum += arr[i] - arr[i - k]

        max_sum = max(max_sum, window_sum)

    return max_sum

int max_k_sum(const vector<int>& arr, int k) {

    int n = arr.size();

    int sum = 0;

    // 초기 윈도우 합

for (int i = 0; i < k; i++) {

        sum += arr[i];

    }

    int max_sum = sum;

    // 슬라이딩

for (int i = k; i < n; i++) {

        sum += arr[i] - arr[i - k];  // 윈도우 한 칸 이동

max_sum = max(max_sum, sum); // 최댓값 갱신

}

    return max_sum;

}



문제: 최고의 패

▪ 문제

충북과 영동은 전설적인 전략 보드게임 "패의 계승자"의 고

수들이다. 이 게임은 각자가 가진 N장의 카드 더미에서 연

속된 K장의 카드를 선택해, 그 합이 더 큰 사람이 승리하는

단순하면서도 치열한 심리전이 특징이다.

이번 대결은 지역 대회의 결승전. 두 사람 모두 N장의 카드

를 가지고 있으며, 이제 마지막 한 수를 남겨두고 있다. 전

략도 운도 모두 쏟아부은 이 마지막 선택에서, 연속된 K장

의 카드 중 가장 높은 합을 만드는 사람이 최종 승자가 된

다.

두 사람이 가지고 있는 카드 배열이 주어질 때, 각각 만들

수 있는 최고의 K장을 선택해 운명을 결정하고, 승부의 향

방을 결정해보자.

▪ 입력형식

첫번째 줄에 충북이와 영동이가 가진 카드의 수 N과 K가

공백으로 구분되어 주어진다. (1 ≤ K ≤ N ≤ 100,000)

두번째 줄에는 충북이가 가진 N장의 카드가 공백을 사이에

두고 주어진다.

세번째 줄에는 영동이가 가진 N장의 카드가 공백을 사이에

두고 주어진다.

단, 각 카드에 적힌 값은 1 이상 1,000 이하의 자연수이다.

▪ 출력형식

첫 번째 줄에 충북과 영동이 만들 수 있는 연속된 K장의 카

드 합의 최대값을 공백을 사이에 두고 출력한다.

두 번째 줄에 충북이가 이기게 될 경우 "Chungbuk"을, 영

동이가 이길 경우 "Yeongdong"을, 만약 두 사람이 선택한

카드의 값이 같을 경우 "Draw"를 출력한다.

(출력에 따옴표는 포함하지 않음에 유의)

• 출처: 2025 충북정올 학교예선 고등부 4번



문제: 최고의 패

▪ 입력과 출력의 예

• 출처: 2025 충북정올 학교예선 고등부 4번

입력 예2 출력 예2

5 2
1 9 1 9 1
5 5 5 5 5

10 10
Draw

입력 예1 출력 예1

5 3
1 9 2 5 4
2 7 6 6 5

16 19 
Yeongdong



정답: 최고의 패

▪ C++ 구현

int main() {

    int n, k;

    cin >> n >> k;

    vector<int> cb(n), yd(n);

    for (int i = 0; i < n; i++) 

        cin >> cb[i];

    for (int i = 0; i < n; i++)

        cin >> yd[i];

    int max_c = max_k_sum(cb, k);

    int max_y = max_k_sum(yd, k);

    cout << max_c << " " << max_y << endl;

    if (max_c > max_y) 

        cout << "Chungbuk" << endl;

    else if (max_c < max_y) 

        cout << "Yeongdong" << endl;

    else 

        cout << "Draw" << endl;

}

#include <iostream>

#include <vector>

using namespace std;

int max_k_sum(const vector<int>& arr, int k) {

    int n = arr.size();

    int sum = 0;

    // 초기 윈도우 합

for (int i = 0; i < k; i++)

        sum += arr[i];

    int max_sum = sum;

    for (int i = k; i < n; i++) {

        sum += arr[i] - arr[i - k];  // 윈도우 한 칸 이동

max_sum = max(max_sum, sum); // 최댓값 갱신

}

    return max_sum;

}



정답: 최고의 패

▪ 파이썬 구현

# 입력

n, k = map(int, input().split())

cb = list(map(int, input().split()))

yd = list(map(int, input().split()))

# 최대 K구간 합 계산

max_c = max_k_sum(cb, k)

max_y = max_k_sum(yd, k)

# 출력

print(max_c, max_y)

if max_c > max_y:

    print("Chungbuk")

elif max_c < max_y:

    print("Yeongdong")

else:

    print("Draw")

def max_k_sum(arr, k):

    window_sum = sum(arr[:k]) # 초기 윈도우 합

    max_sum = window_sum

    for i in range(k, len(arr)):

        window_sum += arr[i] - arr[i - k]

        max_sum = max(max_sum, window_sum)

    return max_sum



난수의 생성과 활용

168



의사 랜덤

▪ 개요

• 의사 랜덤(pseudo-randomness)은 규

칙이 없는 무작위적인 값을 임의로 만

들어 내는 것

• 그렇게 만들어진 값들은 통계적으로 실

제 랜덤과 비슷한 확률로 분포해야 함

• 의사 랜덤은 자연계의 무작위성과 다르

게, 무작위 숫자들을 재현할 수 있기

때문에 통계적 처리, 알고리즘이나 오

류 테스트, 서로 다른 알고리즘의 효율

성 비교에 효과적으로 쓰임

▪ 선형 합동 생성법

• 무작위 수열을 만들어 내는 간단한 방법

• 시작 값, 곱할 값, 더할 값, 나눌 값에

따라 생성되는 값들의 순서와 무작위성

이 결정된다.

Xn+1 = (Xn * a + c) mod m

변수 범위 설명

X0 0 ≤ X0 ≤ m seed, 시작하는 값

a 0 < a < m multipier, 곱하는 값

c 0 ≤ c < m increment, 더하는 값

m 0 < m modulus, 나눌 값



의사 랜덤

▪ 처음 시작하는 시드 값 0, m=9, a=4, c=1 로

할 때 생성되는 선형 합동 생성 수열을 계산하는

프로그램을 작성해 보자.

▪ 다양한 시드 값, m, a, c를 선택해 만들어지는

수열에 대해 규칙성 여부, 주기 등의 특성의 분

석해 보자.

Xn+1 = (Xn * a + c) mod m

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Xn 0

#include <stdio.h>

int seed = 0;
int a=4, c=1, m=9;

int next(int x) {
int n=(x*a+c) % m;
return n;

}

int main() {
int x = seed;
for(int i=0; i<=16; i++) {

x = next(x);
printf("%d ", x);

}
}





의사 랜덤

▪ 의사 난수 생성 함수

• 0부터 RAND_MAX(32767) 범위의 의사

난수를 반환

• <stdlib.h> 헤더파일 필요

▪ 테스트

• 기대와는 달리 항상 똑같은 결과에

어리둥절

172

int rand(void);
#include <stdio.h>

#include <stdlib.h>

int main(void) {

    for(int i=0; i<10; i++) {

        printf("%d\n", rand());

    }

    return 0;

}



의사 랜덤

▪ 매번 다른 결과를 얻으려면… ▪ 범위 난수

173

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(void) {

    srand(time(NULL));

    for(int i=0; i<10; i++) {

        printf("%d\n", rand());

    }

    return 0;

}

// a:시작수, b:마지막수

int range_rand(int a, int b) {

    return rand()%(b-a+1)+a;

}

// 11부터 20 사이의 난수를 얻고 싶을 때,

range_rand(11, 20);  

// 11부터 20까지는 10개의 숫자이므로

// 10으로 나눈 나머지를 구하면 10개 숫자를

// 얻을 수 있고 11부터 이므로 11을 더해야 함.

// 따라서 수식은 아래와 같이 만들어야 함.

rand() % (20-11 +1) + 11



의사 랜덤

▪ 범위 난수 테스트

174

▪ rand()의 문제점

• RAND_MAX(32767)를 넘어서는 난수를

뽑을 수 없음.

• 범위 제한 시 % 연산은 균등 확률을

보장하지 못함.

• 예를들어, 0 ~ 32767 범위의 난수를

10으로 나눈 나머지는 0~7이 될 확률

이 8~9 가 될 확률보다 높음.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int range_rand(int a, int b) {

    return rand()%(b-a+1)+a;

}

int main(void) {

    srand(time(NULL));

    int cnt[12]={0, };

    printf("RAND_MAX: %d\n", RAND_MAX);

    for(int i=0; i<10000; i++)

        cnt[range_rand(1, 10)]++; // [1, 10]

    for(int i=0; i<=11; i++) {

        printf("%2d: %5d\n", i, cnt[i]);

    }

}



의사 랜덤

▪ C++의 새로운 라이브러리 이용 ▪ 범위 난수

175

#include <stdio.h>

#include <time.h>

#include <random>

using namespace std;

int main() {

    // 난수 생성 엔진을 초기화.

    mt19937 gen(time(NULL));

    // 1부터 10까지 균등분포 정의(균등한 확률로 뽑기)

    uniform_int_distribution<int> dis(1, 10);

    for (int i = 0; i < 10; i++) {

        printf("%d ", dis(gen));

    }

}

#include <stdio.h>

#include <time.h>

#include <random>

using namespace std;

mt19937 gen(time(NULL));

int range_rand(int a, int b) {

    uniform_int_distribution<int> dis(a, b);

    return dis(gen);

}

    

int main(void) {

    int cnt[12]={0, };

    for(int i=0; i<10000; i++)

        cnt[range_rand(1, 10)]++; // [1, 10]

    for(int i=0; i<=11; i++) {

        printf("%2d: %5d\n", i, cnt[i]);

    }

}



Up & Down 숫자 맞추기 게임

▪ 이 게임은?

• 컴퓨터가 지정된 범위 안에서 임의 숫

자 하나 r을 뽑는다.

• 사람은 이 숫자를 감으로 맞추어야 한

다.

• 사람이 숫자 p를 입력하면 컴퓨터는 딱

두 종류의 힌트만 준다.

• r>p 이면: UP

• r<p 이면: DOWN

• 이 게임은 이론적으로 log2경우의수 안

에 맞출 수 있다.

▪ 정답 r이 103인 경우 예시

176



Up & Down 숫자 맞추기 게임

▪ 예시 프로그램

177

#include <stdio.h>

#include <time.h>

#include <random>

using namespace std;

mt19937 gen(time(NULL));

int range_rand(int a, int b) {

    uniform_int_distribution<int> dis(a, b);

    return dis(gen);

}

int main() {

    int r = range_rand(100, 999);  // 100 ~ 999

    int limit = 10;

    int p; //게이머가 입력한 수

    // cnt가 1부터 limit이하인 동안 반복 {

    // [ ] Guess num: 이라 찍고

    // 숫자 p변수에 입력 받음

    // 정답이면 반복문 탈출

    // 정답보다 작은수를 찍었으면 UP 이라고 출력,

    // 정답보다 큰 수를 찍었으면 DOWN이라고 출력

    if(r==p) 

        printf("\nGood job!\n");

    else     

        printf("\nYou failed!\nAnser is %d\n", r);

}

for(int cnt=1; cnt<=limit; cnt++) {

        printf("[%2d] Guess num: ", cnt);

        scanf("%d", &p);

        if(r == p) break;

        else if(r>p) printf("UP\n");

        else         printf("DOWN\n");

    }



Up & Down 숫자 맞추기 게임

▪ 난이도 설정 업데이트

178

#include <stdio.h>

#include <time.h>

#include <random>

#include <math.h>

#define  logB(base, x)  log(x)/log(base)

using namespace std;

mt19937 gen(time(NULL));

int range_rand(int a, int b) {

    uniform_int_distribution<int> dis(a, b);

    return dis(gen);

}

int main() {

    int d;

    printf("input Game difficulty(2~9): ");

    scanf("%d", &d);

int min = pow(10, d-1);

    int max = pow(10, d)-1;

    int limit = logB(2, max-min)+1;

    printf("[%d, %d] limit: %d\n\n", min, max, limit);

    int r = range_rand(min, max);

    int p;

    for(int cnt=1; cnt<=limit; cnt++) {

        printf("[%2d] Guess num: ", cnt);

        scanf("%d", &p);

        if(r == p)   break;

        else if(r>p) printf("UP\n");

        else         printf("DOWN\n");

    }

    if(r==p) 

        printf("\nGood job!\n");

    else     

        printf("\nYou failed!\nAnser is %d\n", r);

}

int min = pow(10, d);

    int max = pow(10, d+1);

    int limit = logB(2, max)+1;

• https://gifted.datahub.pe.kr/src/gifted/random/guess_num_game_update.cpp

https://gifted.datahub.pe.kr/src/gifted/random/guess_num_game_update.cpp
https://gifted.datahub.pe.kr/src/gifted/random/guess_num_game_update.cpp


숫자 야구

▪ 숫자 야구란?

• 원제는 Bulls and Cows

• 본질은 숫자 맞추기 게임

• 사용되는 숫자는 0에서 9까지 서로 다른

숫자이다.

• 야구의 정규 이닝이 9회까지 밖에 없기 때

문에 기회를 9회로 제한한다.

• 출제자는 3자리의 숫자를 임의로 정한다.

• 맞추는 사람은 숫자를 불러서 결과를 확

인하고 그 결과를 토대로 다른 숫자로 다

음 시도를 진행한다.

• 숫자는 맞지만 위치가 틀렸을 때는 볼.

• 숫자와 위치가 전부 맞으면 스트라이크.

• 숫자와 위치가 전부 틀리면 아웃

• 물론 무엇이 볼이고 스트라이크인지는 알

려주지 않는다.

• 예시 (0    7    6 이 정답인 경우)

179



숫자 야구

▪ 기본설계

• 게임 출력 예시

180

#define LIMIT  9

int main(void) {

    int rand[3];    // 컴퓨터가 찍은 숫자

int pick[3];    // 입력한 숫자

int strike=0, ball=0;

    uniq_rand_3num(rand);   // 컴퓨터가 숫자 세 개 찍기

    int cnt=1;

    while(cnt <= LIMIT) {

        printf("[%2d] Guess num: ", cnt);

        get_3num(pick);  // 사용자에게 숫자 세 개 입력 받기

        strike = count_strike(rand, pick); // 스트라이크 세기

        ball   = count_ball(rand, pick);   // 볼 카운트 세기

        if(strike==3)

            break;

        else if(strike==0 && ball==0)

            printf("\tOut\n");

        else

            printf("\tS: %d, B: %d\n", strike, ball);

        cnt++;

    }

}



181

#include <stdio.h>

#include <time.h>

#include <random>

#include <conio.h>

#include <ctype.h>

#define  LIMIT  9

using namespace std;

mt19937 gen(time(NULL));

int range_rand(int a, int b) {

    uniform_int_distribution<int> dis(a, b);

    return dis(gen);

}

// rand 배열에 난수 3개 채우기(겹치지 않는 난수는 옵션)

void uniq_rand_3num(int rand[]) {

    //printf("%d %d %d\n", rand[0], rand[1], rand[2]);

}

// 숫자 3개 입력 받기, 숫자가 아닌 문자가 입력되면 무시

// 이미 입력된 숫자

void get_3num(int pick[]) {

}

int count_strike(int rand[], int pick[]) {

    int strike=0;

    for(int i=0; i<3; i++) {

        if(rand[i]==pick[i]) {

            strike++;

            // strike로 판정한 숫자를

            // ball 카운트 할 때 또 다시 세는 것을 예방

            pick[i]=-1; 

        }

    }

    return strike;

}

do {

        for(int i=0; i<3; i++) {

            rand[i] = range_rand(0, 9); // 0 ~ 9

        }

    }

     while(rand[0]==rand[1] || 

           rand[1]==rand[2] || rand[0]==rand[2]);

for(int i=0; i<3; ) {

        int ch = getch();

        if(isdigit(ch)) {   // 숫자가 입력되면,

            pick[i] = ch-'0';

            printf("%d ", pick[i]);

            i++;

        }

    }

• https://gifted.datahub.pe.kr/src/gifted/random/baseball_game1.cpp

답: 2 3 2
입력: 2 2 1

https://gifted.datahub.pe.kr/src/gifted/random/baseball_game1.cpp
https://gifted.datahub.pe.kr/src/gifted/random/baseball_game1.cpp


182

int count_ball(int rand[], int pick[]) {

    int ball=0;

    return ball;

}

int main(void) {

    int rand[3];    // 컴퓨터가 찍은숫자

int pick[3];    // 입력한 숫자

int strike=0, ball=0;

    uniq_rand_3num(rand);   // 컴퓨터가 숫자 세 개 찍기

    int cnt=1;

    while(cnt <= LIMIT) {

        printf("[%2d] Guess num: ", cnt);

        get_3num(pick);     // 사용자에게 숫자 세 개 입력 받기

strike = count_strike(rand, pick);

        ball   = count_ball(rand, pick);

        if(strike==3)

            break;

        else if(strike==0 && ball==0)

            printf("\tOut\n");

        else

            printf("\tS: %d, B: %d\n", strike, ball);

        cnt++;

    }

    if(strike >= 3) {

        if(cnt <= 2)      puts("\nIt's miracle!!!");

        else if(cnt <= 5) puts("\nPerfect!!!");

        else if(cnt <= 9) puts("\nGood job!");

    }

    else {

        printf("\nRetry again\nRight anser is ");

        printf("%d %d %d\n", rand[0], rand[1], rand[2]);

    }

    return 0;

}

for(int i=0; i<3; i++) {

        if(rand[i]==pick[(i+1)%3]) {

            ball++;

        }

        if(rand[i]==pick[(i+2)%3]) {

            ball++;

        }

    }

• https://gifted.datahub.pe.kr/src/gifted/random/baseball_game1.cpp

https://gifted.datahub.pe.kr/src/gifted/random/baseball_game1.cpp
https://gifted.datahub.pe.kr/src/gifted/random/baseball_game1.cpp


몬테카를로 알고리즘

▪ 개요

• 몬테카를로 알고리즘은 폴란드계 미국

인 수학자 스타니스와프 울람이 제안한

알고리즘

• 이 알고리즘은 원하는 결과값의 정확한

값을 얻는 방법이 아니고, 난수를 이용

하여 어떤 함수의 답을 확률적으로 근접

하게 계산하는 방식

▪ 원주율 구하기 문제에 적용

• [2 x PI x 반지름 = 원의 둘레] 이므로,

• PI = 원의 둘레/(2 x 반지름)

• 정확한 원의 둘레의 길이를 구할 수 없

으므로 이 식을 가지고는 원하는 PI값을

구할 수 없다.

183



몬테카를로 원주율 시뮬레이션

▪ 개요

• 반지름이 r인 원과 원을 둘러싼 정사각

형을 4등분하면 반지름이 r인 정사각형

과 그 안에 원의 4등분 된 부채꼴이 만들

어 진다.

• 원의 넓이는 π x r x r 이므로 이 부채

꼴의 넓이는 πr2/4

• 이때 이 도형을 향해 다트를 던진다고 상

상해보면 부채꼴 내부에 다트가 맞을 확

률은 πr2 / 4r2  =  π/4

• 즉 100개의 다트를 던졌을 때 이 중 80

개의 다트가 부채꼴 내부에 맞았다면,

π/4 = 80/100 이므로 π = 3.2 이다. 

• 이제 다트 n개를 던졌다고 가정하고, 이

중 m개의 다트가 부채꼴 내부에 맞았다고

일반화를 하면 ,

• π/4 = m/n  → π = m/n*4

185



몬테카를로 원주율 시뮬레이션 (C버전)
#include <stdio.h>

#include <time.h>

#include <random>

#define  MAX  100000000

using namespace std;

mt19937 gen(time(NULL));

uniform_real_distribution<double> dis(0, 1);

int main() {

    int in_cnt=0, tot_cnt=0;

    for(int i=0; i<MAX; i++) {

        double x = dis(gen);

        double y = dis(gen);

        tot_cnt++;

        if(x*x + y*y <= 1)

            in_cnt++;

        if(tot_cnt % 10000000 == 0) {

            double pi = (double)in_cnt/tot_cnt*4;

            printf("[%9d tested] pi: %lf\n", tot_cnt, pi);

        }

    }

}
186



몬테카를로 원주율 시뮬레이션

187



몬테카를로 원주율 시뮬레이션
// p5.js

function setup() {

  createCanvas(340, 360);

}

let m=10;   // 여백

let r=300;  // 반지름

let v=r*r/100;  // draw() 당 실험 갯수

let t=0;  // 모든 점 개수

let c=0;  // 부채꼴 안 점 개수

// 램덤 점 좌표 저장 배열

let d=Array.from(Array(r), () => new Array(r).fill(0))

let xt, yt, PI_t;

function draw() {

  background(255);

  fill(0);

  

  for(var i=1; i<=v; i++) {

    xt = Math.floor(Math.random()*r);

    yt = Math.floor(Math.random()*r);

    t++;  // 점 개수 증가

if(xt*xt + yt*yt < r*r) {  // 부채꼴 안쪽인가?

      d[xt][yt]=1;

      c++;  // 부채꼴 안쪽 점 증가

}

    else

      d[xt][yt]=2;

  }

  

  // 점 그리기

for(var i=0; i<r; i++) {

    for(var j=0; j<r; j++) {

      if(d[i][j]==1) stroke('#ff0000');

      else if(d[i][j]==2) stroke('#008000');

      else stroke('#ffffff')

      point(m+i, m+j)

    }

  }

  

  text("Total="+t, m, m+r+15);

  text("Count="+c, m+100, m+r+15);

  PI_t = 4*c/t;

  text("Monte Carlo PI: " + PI_t, m, m+r+35);

}

188



알고리즘의 효율성

▪ 시간 복잡도

• time complexity

• 문제를 해결하는데 걸리

는 시간과의 함수 관계

• 반복문, 중첩된 반복문의

구조와 개수에 의해 결정

▪ 공간 복잡도

• space complexity

• 문제를 해결하기 위해

필요한 메모리(저장)

공간의 양

• 변수 및 배열의 개수와

크기에 의해 결정

• 함수가 호출될 때마다

사용되는 스택 공간이

늘어남

189

 이해의 복잡도

 difficulty

 알고리즘 이해와 구현

에 필요한 시간과 노

력의 양



시간 복잡도

▪ 시간 복잡도의 종류

1) 빅오 (big-O) 표기법

• 시간의 상한 (최악의 경우)

• 해당 알고리즘은 big-O 보다 더 오래 걸

릴 수 없다.

2) 빅오메가 (big-Omega) 표기법

• 시간의 하한 (최선의 경우)

• 해당 알고리즘은 big-Omega 보다 더 빠

를 수 없다.

3) 빅세타 (big-theta) 표기법

• 평균적인 경우, 딱 맞는 수행 시간

• big-O 와 big-Omega 를 하나로 합쳐 표

현한 것과 같다.

• 예를 들어, 수행시간이 빅오가 N, 빅오메가가
N 이라면, 빅세타도 N 이다. 

▪ 가장 많이 쓰이는 표기법

• 현실에서는 항상 최악의 경우를 생각해야
하기 때문에 빅오 표기법을 많이 사용

190



알고리즘의 시간 복잡도

▪ 빅오(O)표기법

• 빅오 표기법은 알고리즘의 성능 평가

방법 중 가장 많이 사용하는 방법 중

하나

• 가장 많이 사용하는 이유는 최악의

성능을 표시하기 때문

• 최악의 성능 지표는, 적어도 이 정도

의 성능은 보장한다는 의미

• 실행 횟수를 점근적 표기법으로 표시

▪ 표기 형식

▪ 실행 횟수 계산

• 프로그램은 첫번째 줄부터 마지막 줄

까지 차례로 실행된다고 가정.

• 헤더 파일은 알고리즘의 성능에 영향

을 주지 않는다.

• 함수 진입, 함수 반환은 알고리즘 성

능에 영향을 주지 않는다.

191

최소 n번은
연산해야
답이 나온다.



알고리즘의 시간 복잡도

▪ 프로그램 예시 ▪ 실행 횟수 계산

• 상수항은 무시

• 𝑂 101 → 𝑂(1)

• 𝑂(2𝑁 + 1) → 𝑂(𝑁)

• 지배적이지 않은 항은 무시

• 𝑂(𝑁2 + 𝑁) → O(𝑁2)

• O(𝑁 + 𝑙𝑜𝑔𝑁) → O(𝑁)

• O(100 × 2𝑁 + 500𝑁2) → 𝑂(2𝑁)

▪ 예시 프로그램의 Big-O: 𝑂(𝑁)

192

#define N 100             // 영향을 주지 않는다.

#include <stdio.h>        // 영향을 주지 않는다.

void main(int)            // 영향을 주지 않는다.

{

    int sum = 0;          // 실행 횟수: 1회

int i;                // 실행 횟수: 1회

for(i=1; i<=N; i++) { // 실행 횟수: N+1회

sum = sum + i;    // 실행 횟수: N회

}

    printf("sum:%d\n",sum);  // 실행 횟수: 1회

// 총 횟수: 1 + 1 + N+1 + N + 1 = 2N + 4회

}



빅오 표기의 종류

▪ 𝑂(1) 

• 상수시간(constant time)

• 데이터 양과 상관없이 문제 해결에

항상 정해진 시간이 걸림

• 평가: 최상의 알고리즘

• 알고리즘 예

• 정수의 홀짝 판별

• 가우스의 1~N 누계 구하기

• (시작수+마지막수) x n / 2

▪ 𝑂(𝑙𝑜𝑔𝑁)

• 로그시간(logarithmic)

• 데이터 양이 증가 함에 따라 실행 시

간이 로그 함수 그래프로 나타남

• 데이터가 많이 늘어나도 실행시간은

약간만 증가하는 특징

• 평가: 매우 좋은 알고리즘

• 알고리즘 예

• 이진탐색

•   10개 일때, log210  = 3.x

•  100개 일때, log2100 = 6.x

• 1000개 일때, log21000= 9.x

193



빅오 표기의 종류

▪ 𝑂(𝑁)

• 선형시간(linear time)

• 데이터 양의 증가에 따라 실행 시간

이 일차 함수 그래프로 나타남

• 테이터 증가량과 정비례하여 실행 시

간이 증가하는 특징

• 평가: 좋은 알고리즘

• 알고리즘 예

• 정렬되지 않은 배열에서 최댓값 찾기

▪ 𝑂(𝑁 𝑙𝑜𝑔𝑁)

• 선형 로그 시간(linearithmic time)

• 데이터 양의 증가에 따라 실행 시간

이 일차 함수 + 로그함수 형태의 그

래프로 나타남

• 데이터의 증가량보다 실행시간이 더

많이 증가하는 특징

• 평가: 준수한 알고리즘

• 알고리즘 예

• 힙 정렬

• 자이델(Seidel)의 다각형 삼각

194



빅오 표기의 종류

▪ 𝑂(𝑁2)

• 이차식 시간(quadratic time)

• 데이터 양의 증가에 따라 실행 시간

이 이차 함수(𝑁2) 그래프로 나타남

• 테이터 증가량에 제곱으로 비례하여

실행 시간이 증가하는 특징

• 평가: 그저 그런 알고리즘

• 알고리즘 예

• 선택정렬

• 버블정렬

▪ 𝑂(𝑁3)

• 삼차식 시간(cubic time)

• 데이터 양의 증가에 따라 실행 시간

이 삼차 함수(𝑁3) 그래프로 나타남

• 테이터 증가량과 정비례하여 실행 시

간이 증가하는 특징

• 평가: 나쁜 알고리즘

• 알고리즘 예

• 행렬 2개의 무식한 곱셈

195



빅오 표기의 종류

▪ 𝑂(2𝑁)

• 지수 시간(exponential time)

• 데이터 양의 증가에 따라 실행 시간

이 지수 함수(2𝑁) 그래프로 나타남

• 테이터 증가량에 따라 실행 시간이

지수 형태로 증가하는 특징

• 평가: 끔찍한 알고리즘

• 알고리즘 예

• 2𝑁을 재귀 호출로 계산

▪ 𝑂(𝑁!)

• 계승 시간(factorial time)

• 데이터 양의 증가에 따라 실행 시간

이 팩토리얼 함수(𝑁!) 그래프로 나타

남

• 평가: 최악의 알고리즘

• 알고리즘 예

• 브루트포스 탐색을 통한 외판원 문제

해결방법

196



빅오 표기의 종류

▪ 알고리즘 성능 비교

• 𝑂 1 > 𝑂(log 𝑁) > 𝑂 𝑁 >  𝑂(𝑁 log 𝑁) >  𝑂 𝑁2 >  …  > 𝑂 2𝑁 > 𝑂(𝑁!)

197



시간제한 피하기

▪ 주어진 입력 N의 크기에 따른 허

용 시간 복잡도

▪ 활용 방법

• 컴퓨터는 대략 1초에 1억회의 연산

수행한다고 가정하고 왼쪽 표를 얻어

냄

• 시간 제한은 대부분 1~5초

• 입력 데이터가 5000개 이하로 주어진

다면 O(𝑁2) 또는 그보다 빠른 알고리

즘을 설계하여 문제를 풀어야 함.

• 입력 데이터가 25개 이하로 주어진다

면 O(2𝑁) 알고리즘만 되어도 통과 가

능할 것임.

198https://rh-tn.tistory.com/3

N의 크기 시간복잡도

N ≤ 11 O(N!)

N ≤ 25 O(2N)

N ≤ 100 O(N4)

N ≤ 500 O(N3)

N ≤ 3,000 O(N2logN)

N ≤ 5,000 O(N2)

N ≤ 1,000,000 O(NlogN)

N ≤ 10,000,000 O(N)

N > 10,000,000 O(logN), O(1)



알고리즘의 공간 복잡도

▪ 공간 복잡도(Space Complexity)

란?

• 프로그램을 실행시킨 후 완료하는 데

필요로 하는 자원 공간의 양

• 𝑆 𝑃 = 𝑐 + 𝑆𝑝 𝑁

• 총 공간 요구 = 고정 공간 요구 + 가

변 공간 요구

• 고정 공간: 입출력 횟수나 크기와 관

계없는 공간 요구

• 가변 공간: 문제 해결을 위해 필요한

공간 + 재귀 호출에 요구 되는 공간

▪ 빅오 표기법

• 알고리즘의 공간복잡도 역시 빅오 표기

법으로 표현 가능하며 계산법 역시 동일

• 단, 재귀 호출에 사용되는 스택 공간도

고려해야 함.

• 어떤 알고리즘이 N개의 입력 데이터에

대하여 N x N 크기의 2차원 배열과 N 

크기의 1차원 배열이 필요하다면,

• 이 때 이 알 고 리 즘 의 공 간 복 잡 도 는

𝑂(𝑁2)이다.

199



선형 탐색

feat. 탐색공간의 수학적 배제

200



탐색공간의 배제

▪ 필요성

• 전체 탐색으로 대부분의 경우 해를

구할 수 있음

• 하지만 실행 시간이 너무 길어 제한

시간 내에 문제를 해결하기 힘든 경

우가 많음

• 전체탐색에서 불필요한 탐색 공간을

탐색하지 않음으로써 알고리즘의 효

율 향상 가능

• 모든 공간을 탐색할 것이 아니라 일

정한 조건을 두어 탐색에서 제외

▪ 수학적 배제

• 수학적으로 탐색할 필요가 없음이 증

명된 공간을 탐색에서 제외 

▪ 경험적 배제(가지치기)

• 일정 조건을 만족하는 경우 탐색에서

배제하는데 이 조건은

• 이전에 탐색한 정보를 이용하며,

• 배제 조건은 계속 갱신될 수 있음

201



약수의 합

▪ 문제

한 정수 n을 입력 받는다.

1부터 n의 자연수들 중 n 약수의 합을 구

하는 프로그램을 작성하시오.

예를 들어 n이 10이라면,

10의 약수는 1, 2, 5, 10이므로 구하고자

하는 값은 1 + 2 + 5 + 10을 더한 18이

된다.

▪ 입력

첫 번째 줄에 정수 n이 입력된다.

(단, 1 <= n <= 10,000,000,000(100억))

▪ 출력

n의 약수의 합을 출력한다.

202

입력 예 출력 예

10 18

탐색공간이 매우

넓기 때문에

일반적인 방법으로는

시간 제한에 걸리게

된다.



약수의 합

▪ 단순 풀이 ▪ 평가

• 이 소스코드는 1부터 n까지의 모든 원

소들을 탐색하여, 탐색 대상인 수 i가 n

의 약수라면 취하는 방식으로 진행된다.

• 따라서 계산량은 O(n)이다.

• 이번 문제는 n의 최댓값이 100억이므로

이 방법으로는 너무 많은 시간이 걸린

다. 

• 따라서 탐색영역을 배제해야 할 필요가

있다.

203

#include <stdio.h>

long long n;

long long solve() {

  long long ans=0;

  for(long long i=1; i<=n; i++) {

     //n이 i로 나누어 떨어지면 i는 n의 약수이다

     if(n%i==0) 

        ans+=i;

  }

  return ans;

}

int main() {

    scanf("%lld", &n);

    printf("%lld\n", solve());

    return 0;

}



약수의 합

▪ 고찰

1) 배제를 위한 수학적 아이디어 1

▪ 고찰

2) 배제를 위한 수학적 아이디어 2

204

모든 자연수 n에 대하여 1 과 n 은 항상

n 의 약수이다.

for(int i=2; i<n; i++) {

        if(n % i==0)

            ans+=i;

    }

ex) 10의 약수

     1, 2, 5, 10

ex) 16의 약수

     1, 2, 4, 8, 16

모든 자연수 n에 대하여,

2이상 n미만의 자연수들 중 가장 큰

n의 약수는 n/2를 넘지 않는다.

for(int i=2; i<=n/2; i++) {

        if(n % i==0)

            ans+=i;

    }

ex) 10의 약수

     1, 2, 5, 10

ex) 16의 약수

     1, 2, 4, 8, 16



약수의 합

▪ 고찰

3) 배제를 위한 수학적 아이디어 3

205

약수의 개수를 c개라고 하고 , d를 n의

약수 중 i번째 약수라 하면,

완전 제곱수일 경우 우변 두 항이 동일,

최악의 경우 n 부터 까지만 검색하면

나머지 약수를 모두 찾아낼 수 있음

임의의 자연수 n의 약수들 중 두 약수의

곱은, n이 되는 약수a와 약수b가 반드시

존재한다. 단, n이 완전제곱수 일 경우에는

약수 a와 약수 b가 같을 수 있다.

10의 약수간 관계

16의 약수간 관계

#include <math.h>

  :

    for(int i=1; i<=sqrt(n); i++) {

        if(n % i==0)

            ans+=i;

    }

for(int i=1; i*i<=n; i++) {

        if(n % i==0)

            ans+=i;

    }

반쪽만 찾으면 됨 반쪽만 찾으면 됨



약수의 합

▪ 고찰

3) 배제를 위한 수학적 아이디어 3 구현

ex) 100의 약수 모두 구하기

①               까지 조사

   1, 2, 3, 4, 5, 6, 7, 8, 9, 10

② 약수 집합a { 1,  2,  5,  10}으로부터

   약수 집합b {100, 50, 20, 10}유도

③ 약수 합집합 {1,2,5,10,20,50,100}

▪ 수학적 배제 적용

206

#include <stdio.h>

long long int n;

long long int solve() {

    long long int i, ans = 0;

    return ans;

}

int main() {

    scanf("%lld", &n);

    printf("%lld\n", solve());

    return 0;

}

#include <stdio.h>

int main() {

  long long n;

  long long sum = 0;

  scanf("%lld", &n);

  for (long long i = 1; i*i <= n; i++) {

    if (n % i == 0) { // i가 n의 약수인가?

sum += i; // i를 sum에 더함

      // i와 n / i가 같지 않은 경우에만

if (i != n / i) { 

sum += n / i; // n / i를 sum에 더함

}

    }

  }

  printf("%lld\n", sum);

}



N번째 소수 찾기

▪ 문제

한 정수 n을 입력 받는다.

n번째로 큰 소수를 구하여 출력한다.

예를 들어 n이 5라면,

자연수들 중 소수는 2, 3, 5, 7, 11, 13, …

이므로 구하고자 하는 5번째 소수는 11이

된다.

▪ 입력

첫 번째 줄에 정수 n이 입력된다.

( 단, 1 <= n <= 100,000 )

▪ 출력

n 번째 소수를 출력한다.

207

입력 예 출력 예

77 389

입력 예 출력 예

5 11



N번째 소수 찾기

▪ 단순 풀이

208

#include <stdio.h>

bool is_prime(int k) {

    int cnt = 0;

    for(int i=1; i<=k; i++)

        if(k%i==0)  // k의 약수의 갯수 cnt를 구한다

cnt++;

        

    if(cnt==2) 

        return true;

    else 

        return false;

}

int main() {

    int nth; // 몇 번째

    scanf("%d", &nth);

    

    int prime_cnt=0;

    int n=2;

    while(true) {

        if(is_prime(n)) //소수이면 cnt증가

            prime_cnt++;

        // 찾고자 하는 번째 이면

        if(prime_cnt == nth)

            break;

        n++;

    }

    printf("%d", n);

}

임의의 자연수 k가 소수라면 k의 약수는

1과 k만 존재한다. (약수가 2개 뿐임)



N번째 소수 찾기

▪ 고찰

1) 배제를 위한 수학적 아이디어 1 2) 배제를 위한 수학적 아이디어 2

209

임의의 자연수 k가 소수라면 구간 [2, k-1] 

에서 약수는 존재하지 않는다.

bool is_prime(int k) {

    for(int i=2; i<k; i++) {

        //2~ k-1사이 숫자로 나누어 떨이지면, 

        // 즉, 약수가 존재하면

        if(k%i==0)

            return false;

    }

    return true;

}

약수를 두 개 이상 발견하면 바로 탈출

bool is_prime(int k) {

    int cnt = 0;

    for(int i=1; i<=k; i++) {

        if(k%i==0) cnt++;

        if(cnt > 2)

            break;

    } 

    return (cnt==2);

}

if(cnt>=2 && i<k)



N번째 소수 찾기

▪ 고찰

3) 배제를 위한 수학적 아이디어 3

210

k의 약수를 구하기 위해서는 _____ 까지만

검사하면 된다.

bool is_prime(int k) {

    for(int i=2; i*i<=k; i++) {

        if(k%i==0)

            return false;

    }

    return true;

}

?

#include <stdio.h>

int main() {

    int nth;

    scanf("%d", &nth);

    

    int prime_cnt=0;

    int n=2;

    while(true) {

        if(is_prime(n))

            prime_cnt++;

        if(prime_cnt == nth)

            break;

        n++;

    }

    printf("%d\n\n", n);

}

bool is_prime(int k) {

    for(int i=2; i*i<=k; i++) {

        if(k%i==0)

            return false;

    }

    return true;

}



삼각화단 만들기

주어진 화단 둘레의 길이를 이용하여 삼각형 모양의

화단을 만들려고 한다. 이 때 만들어진 삼각형 화단

둘레의 길이는 반드시 주어진 화단 둘레의 길이와

같아야 한다. 또한, 화단 둘레의 길이와 각 변의 길

이는 자연수이다. 예를 들어, 만들고자 하는 화단

둘레의 길이가 9m라고 하면,

화단 둘레의 길이를 입력 받아서 만들 수 있는 서로

다른 화단의 수를 구하는 프로그램을 작성하시오.

• 입력

화단의 길이 n이 주어진다. (1<=n<=50,000)

• 출력

입력받은 n으로 만들 수 있는 서로 다른 화단의

수를 출력한다.

• 주의

2,3,4 화단과 3,2,4 화단 2,4,3 화단은 모두 같

은 모양의 화단임.

입력 예 출력 예

9 3

• 한 변의 길이가 1m, 두 변의 길이가 4m인 화단

• 한 변의 길이가 2m, 다른 변의 길이가 3m, 나머지

변의 길이가 4m인 화단

• 세 변의 길이가 모두 3m인 3가지 경우의 화단을

만들 수 있다.

• 출처: 한국정보올림피아드(2002 전국본선 초등부)



삼각화단 만들기

▪ 단순 풀이 (오답)

212

#include <stdio.h>

int main(void) {

    int n;

    int cnt=0;

    scanf("%d", &n);

    for(int a=1; a<=n; a++)

        for(int b=1; b<=n; b++)

            for(int c=1; c<=n; c++) {

                if(a+b+c==n) {

                    printf("[%d %d %d]\t", a, b, c);

                    cnt++;

                    // 5개 출력할 때마다 줄 내림

if(cnt%5 == 0) puts("");

                }

            }

    printf("\nfound %d\n", cnt);

}

▪ 평가

• O(n3) 의 시간

소모

• 중복된 삼각형

이 포함됨

• 삼각형 만들기

가 불가능한 길

이도 포함



삼각화단 만들기

▪ 풀이

• 동일한 길이 쌍 제거 조건

•  

• 삼각형의 조건

•  

•  

▪ 정답 알고리즘

213

#include <stdio.h>

int n;

int solve() {

    int cnt = 0;

    scanf("%d", &n);

    for(int a=1; a<=n; a++)

        for(int b=a; b<=n; b++)

            for(int c=b; c<=n; c++ )

                if(a+b+c==n && a+b>c)

                    cnt++;

    return cnt;

}

int main() {

    printf("%d\n", solve());

}



삼각화단 만들기

▪ 고찰

1) 배제를 위한 수학적 아이디어 1

• 공간복잡도가 O(n3) 에서 O(n2) 으로 줄

어든다.

2) 배제를 위한 수학적 아이디어 2

214

둘 레 가 n 인 삼 각 형 의 각 변 의 길 이 를

오름차순으로 정렬한 결과를 a, b, c 라고 할

때, 다음 조건을 만족한다.

for(int c=n/3; c<=n/2; c++)

for(int a=1; a<=n/3; a++) {

int b=n-(a+c);

if(a+b>c && (a<=b && b<=c)) 

cnt++;

}

둘레 길이가 n인 삼각형의 a, b 길 이가

정해지면 c변은 n-(a+b) 계산으로 구할 수 있다.

for(int a=1; a<=n; a++)

   for(int b=a; b<=n; b++) {

      int c=n-(a+b);    // a+b+c=n 조건만족

      if(b<=c && a+b>c) // a≤b는 이미 만족

          cnt++;

}



삼각화단 만들기

▪ 실행시간 비교

1) 배제를 위한 수학적 아이디어 1 2) 배제를 위한 수학적 아이디어 2

215

time_space_table:

/1030/sample.in:AC mem=0k time=2ms

/1030/test01.in:AC mem=0k time=2ms

/1030/test02.in:AC mem=0k time=2ms

/1030/test03.in:AC mem=0k time=3ms

/1030/test04.in:AC mem=0k time=3ms

/1030/test05.in:AC mem=0k time=4ms

/1030/test06.in:AC mem=0k time=7ms

/1030/test07.in:AC mem=0k time=19ms

/1030/test08.in:AC mem=0k time=40ms

/1030/test09.in:AC mem=0k time=68ms

/1030/test10.in:AC mem=0k time=107ms

time_space_table:

/1030/sample.in:AC mem=0k time=3ms

/1030/test01.in:AC mem=0k time=2ms

/1030/test02.in:AC mem=0k time=2ms

/1030/test03.in:AC mem=0k time=3ms

/1030/test04.in:AC mem=0k time=3ms

/1030/test05.in:AC mem=0k time=11ms

/1030/test06.in:AC mem=0k time=38ms

/1030/test07.in:AC mem=0k time=149ms

/1030/test08.in:AC mem=0k time=355ms

/1030/test09.in:AC mem=0k time=586ms

/1030/test10.in:AC mem=0k time=925ms



C++ 입출력

▪ C++의 입출력 클래스 ▪ iostream

• cout 객체: 다양한 데이터를 출력하는 데

사용되는 C++에서 미리 정의된 출력 스트

림을 나타내는 객체

• cin 객체: 다양한 데이터를 입력받는 데

사용되는 C++에서 미리 정의된 입력 스트

림을 나타내는 객체

▪ C언어 표준 입출력 함수와의 차이점

• 삽입 연산자 << 와 추출 연산자 >> 가 데

이터의 흐름을 나타내므로 직관적

• C++ 표준 입출력 객체는 입출력 데이터의

타입을 자동으로 변환시켜주므로 더욱 편

리하고 안전함



C++ 입출력

▪ cout 문자열 출력 ▪ namespace 지정

#include <iostream>

#include <string>

int main() {

    std::cout << "hello, world!" << std::endl;

    std::string s = "what's up?";

    std::cout << s;

    return 0;

}

#include <iostream>

#include <string>

using namespace std;

int main() {

    cout << "hello, world!" << endl;

    string s = "what's up?";

    cout << s;

    return 0;

}



C++ 입출력

▪ cout 데이터 타입 자동 출력 ▪ 소수점 자릿수 지정 출력

#include <iostream>

#include <string>

using namespace std;

int main() {

    char   c = 'A';

    int    n = 100;

    double p = 3.1415926535;

    string s = "Hello";

    cout << c << " " << n << endl;

    cout << "pi = " << p << endl;

    cout << s << "\n";

}

#include <iostream>

using namespace std;

int main(){

    double x = 3.1234567;

    double y = 123456789.123456789;

    cout << x << endl;

    cout << y << endl << endl;

    cout.precision(6);

    cout << x << endl;

    cout << y << endl << endl;

    cout << fixed;

    cout.precision(3);

    cout << x << endl;

    cout << y << endl << endl;

    cout.precision(6);

    cout << x << endl;

    cout << y << endl;

}



C++ 입출력

▪ cin을 이용한 입력1 ▪ cin을 이용한 입력2
#include <iostream>

#include <string>

using namespace std;

int main() {

char   c;

int    n;

double p;

string s;

cout << "혈액형? ";

    cin  >> c;

cout << "키? ";

    cin  >> n;

cout << "몸무게? ";

    cin  >> p;

cout << "이름? ";

    cin  >> s;

cout << "혈액형:" << c << endl;

cout << "키 :" << n << endl;

cout << "몸무게:" << p << endl;

cout << "이름 :" << s << endl;

}

#include <iostream>

#include <string>

int main() {

  std::string s;

  while (true) {

    std::cin >> s;

    std::cout << "word : " << s 

<< std::endl;

  }

}

#include <iostream>

#include <string>

using namespace std;

int main() {

    string s;

    while (true) {

        cin >> s;

        cout << "word : " << s << endl;

    }

}



C++ 입출력

▪ cin.getline() ▪ cin.ignore()
#include <iostream>

using namespace std;

int main() {

char a[100], b[100], c[100];

cin >> a; // cin은 버퍼에 엔터가 남아있음.

    // getline 함수는 버퍼에 엔터 포함X

cin.getline(b, 100);

cin.getline(c, 100);

cout << "a: " << a << endl;

cout << "b: " << b << endl;

cout << "c: " << c << endl;

return 0;

}

#include <iostream>

using namespace std;

int main() {

char a[100], b[100], c[100];

cin >> a; // cin은 버퍼에 엔터가 남아있음.

   cin.ignore(); // 입력 버퍼 비우기

    // getline 함수는 버퍼에 엔터 포함X

cin.getline(b, 100);

cin.getline(c, 100);

cout << "a: " << a << endl;

cout << "b: " << b << endl;

cout << "c: " << c << endl;

return 0;

}



C++ 입출력

▪ cin 입력 ▪ cin
// 주의할 점

#include <iostream>

using namespace std;

int main() {

    int t;

    while (true) {

        cout << "숫자입력: ";

        cin >> t;

        cout << "입력내용: " << t << "\n\n";

        if (t == 0) break;

    }

}

#include <iostream>

#include <string>

int main() {

  std::string s;

  while (true) {

    std::cin >> s;

    std::cout << "word : " << s 

<< std::endl;

  }

}

#include <iostream>

using namespace std;

int main() {

    int t;

    while (true) {

        cout << "숫자입력: ";

        cin  >> t;

        cout << "입력내용: " << t << "\n\n";

        if(! cin.fail()) {

            if (t == 0) break;

        }

        else {

            cout << "제대로 입력해주세요" << endl << endl;

            cin.clear();            // 플래그들을 초기화 하고

cin.ignore(100, '\n');  // 개행문자가 나올 때 까지 무시한다

}

    }

}



구조체

▪ 구조체란?

• C언어의 기본 타입을 가지고 새롭게

정의하는 사용자 정의 타입

• 기본 타입만으로는 나타낼 수 없는 복

잡한 데이터를 표현 가능

• 배열이 같은 타입의 변수 집합이라고

한다면, 구조체는 다양한 타입의 변수

집합을 하나의 타입으로 나타낸 것

• 구조체를 구성하는 변수를 구조체의

멤버(member)라고 부른다

• C++의 구조체는 함수도 멤버로 가질

수 있음

▪ 구조체의 정의와 선언 예

222

#include <stdio.h>

struct circle {

    int x, y;  // 원의 중심점

    double r;  // 원의 반지름

};

int main() {

    circle c1 = {1, 2, 5.2};

    printf("(%d, %d) %g", c1.x, c1.y, c1.r);

}



구조체
▪ 구조체 복사 ▪ 구조체의 함수 멤버

223

#include <iostream>

#include <string>

using namespace std;

struct student {

    int hak, ban, bun;

    string name;

    void output() {

        cout << endl << hak << ban << bun << " " << name;

    }

};

int main() {

    student s1;

    cout << "학년: ";

    cin  >> s1.hak;

    cout << "반: ";

    cin  >> s1.ban;

    cout << "번호: ";

    cin  >> s1.bun;

    cout << "이름: ";

    cin  >> s1.name;

    s1.output();

}

#include <stdio.h>

struct circle {

    int x, y;  // 원의 중심점

double r;  // 원의 반지름

};

int main() {

    circle c1 = {1, 2, 5.2};

    circle c2 = c1;

    printf("(%d, %d) %g\n", c1.x, c1.y, c1.r);

    printf("(%d, %d) %g\n", c2.x, c2.y, c2.r);

}



STL

(Standard Template Library)

224



임의의 타입의

객체를 보관

컨테이너에

보관된 원소에 

접근하는 일관된

인터페이스 제공

반복자들을

가지고 일련의

작업을 수행하는

알고리즘



1) 컨테이너

▪ 같은 타입의 여러 객체를 저장하는 객체

• 클래스 템플릿으로 작성됨 (즉, 무엇이든 넣을 수 있다)

▪ 컨테이너의 종류

종류 설명 컨테이너

순차 컨테이너
특별한 규칙이 없는 일반적인 컨테이너

순서가 있는 선형구조.

array, vector, dequeue, 

list, forward_list

연관 컨테이너
특정 규칙에 의해서 정렬, 저장, 관리

순서가 없는 비선형구조.

map, miltimap,

set, multiset

비정렬 컨테이너
내용물이 정렬되지 않은 상태로 보관되는

순서 없는 비선형 구조.

unordered_map, unordered_multimap,

unordered_set, unordered_multiset

컨테이너 어뎁터

간결함과 명료성을 위해 인터페이스를 제

한한 시퀀스나 연관 컨테이너의 변형.

반복자를 지원하지 않음.

queue, priority_queue, stack



1) 컨테이너 (container)

▪ 컨테이너별 성능비교



2) 반복자 (interator)

▪ 컨테이너에 저장된 요소를 반복적으로 순회하여 요소를 가리키는 객체

▪ 컨테이너의 구조나 요소의 타입과 상관없이 동일한 방식으로 데이터를

순회할 수 있도록 한다.

▪ 반복자의 종류

종류 설명

입력 반복자 현재 위치의 객체의 값을 읽어 오는 반복자

출력 반복자 현재 위치의 객체의 값을 변경할 수 있는 반복자

순방향 반복자 순방향으로 이동(++) 가능하면 재할당이 가능하다.

양방향 반복자 순방향 반복자 기능에 역방향으로 이동(--)이 가능한 반복자 이다.

임의 접근 반복자 양방향 반복자 기능과 []을 사용하여 임의의 요소에 접근 가능한 반복자이다.



3) 알고리즘

▪ 컨테이너를 알고리즘을 통해 동작시키는데 필요한 많은 함수를 제공

▪ STL 알고리즘과 함께 사용되며 반복자를 통해 컨테이너에 적용시킨다

▪ 알고리즘의 종류

종류 설명 대표 함수

읽기 알고리즘
컨테이너를 변경하지 않으며, 컨테이너의 지정된

범위에서 특정 데이터를 읽기만 하는 알고리즘
#include <algorihth>

find(), for_each()

변경 알고리즘
컨테이너를 변경하지 않으며, 컨테이너의 지정된

범위에서 요소의 값만을 변경할 수 있는 알고리즘
#include <algorihth>

copy(), swap(), transform()

정렬 알고리즘
컨테이너의 지정된 범위의 요소들이 정렬되도록

컨테이너를 변경하는 알고리즘

#include <algorihth>

sort(), stable_sort(),

binary_search()

수치 알고리즘
STL에 직접 속하지 않고 C++라이브러리로 분류

되는 알고리즘으로 수치적 해석을 위해 사용
#include <numeric>

accumulate()



STL Container
1. Array 

2. Vector

3. Deque (Double Ended Queue)

4. Queue

5. Heap (Priority Queue)

Standard Template Library

230



Standard Sequence Containers Overview



array 컨테이너

▪ 고정된 크기의 배열을 담고 있

는 컨테이너

▪ 크기를 늘이거나 줄일 수 없음

   cf) vector

▪ C 배열과 같은 형태를 유지하면

서, C++의 반복자, 대입연산자

사용 가능



array 컨테이너

▪ 대입연산자 (oprator=)

#include <array>

#include <iostream>

using namespace std;

int main() {

  array<int, 6> data = {1, 2, 4, 5, 5, 6};

  // Set element 1

  data[1] = 88;  // 경계 검사 안함

  // Read element 2

  cout << "인덱스 2 에 위치한 원소 : " << data.at(2) << '\n';

  cout << "data 배열의 크기 = " << data.size() << '\n';

  try {

    data.at(7) = 678;  // 0-base 7th elements

  } catch (out_of_range const& ex) {

    cout << "예외 발생 : " << ex.what() << '\n';

  }

  // Print final values

  cout << "data:";

  for(int elem : data) 

    cout << " " << elem;

  cout << '\n';

}



vector container

▪ vector의 특징

• 크기를 바꿀 수 있는 순차 컨테이너

• 가변길이 배열이라고 생각하면 쉬움

• 특정 위치의 원소에 빠르게 접근 가능

• 벡터에 원소가 삽입되고 삭제됨에 따라

자동으로 크기 조절됨

• #include <vector> 필요

• 주요 사용 사례

• 주로 임의 접근이 빈번하고, 끝에서의

삽입과 삭제가 주로 발생하는 경우에

사용

▪ vector의 선언

vector<자료형> 변수명;

vector<자료형> 변수명 = { 초기값 };

vector<int> v1;    // int를 담는 벡터

vector<double> v2; //double을 담는 벡터

234



vector container

▪ vector의 사용 예시

235

#include <stdio.h>

#include <vector>

using namespace std;

int main() {

    vector<int> v = {2, 4, 5};                              // 벡터 v 선언 및 초기화

    v.push_back(6);                                         // 맨 마지막에 6 삽입

    v.pop_back();                                           // 맨 마지막 원소 제거

    v[1] = 3;                                               // 1번 원소 3으로 교체

    printf("%d\n", v[2]);                                   // 2번 인덱스 원소 출력

    for(int x: v) printf("%d ", x);                        // 벡터의 모든 원소를 순회하면서 출력

    v.reserve(8);                                           // 벡터에 할당된 메모리 8칸으로 조정

    v.resize(5, 0);                                         // 벡터의 크기 5로 조절하고 빈 공간 0으로 채움

    printf("\n%d\n", v.capacity());                         // 벡터가 차지하는 공간 출력

    printf("%d\n", v.size());                               // 벡터의 크기 출력

}



vector container

▪ vector의 메소드

• v.back() : v의 마지막 원소를 참조한다.

• v.front() : v의 첫 번째 원소를 참조한다.

• v.begin() : v의 시작을 가리키는 반복자를 반

환한다.

• v.end() : v의 끝을 가리키는 반복자를 반환한

다.

• v.push_back(x) : v의 끝에 x를 추가한다

• v.pop_back() : 마지막 원소를 제거한다.

• v.size() : v벡터의 원소의 개수 리턴, 값은

unsigned int가 나옴 (모든 컨테이너가 가진

함수)

• v.resize(n) : v의 크기를 n으로 변경하고 확

장되는 공간을 기본값으로 초기화

• v.resize(n, x) : v의 크기를 n으로 변경하고

확장되는 공간의 값을 x로 초기화

• v.capacity() : 실제 할당된 메모리 공간의 크

기(vector만이 가지고 있는 함수)

• q = v.insert(p, x) : p가 가리키는 위치에 x

값을 삽입한다. q는 삽입한 원소를 가리키는 반

복자

• v.insert(p, n, x) : p가 가리키는 위치에 n개

의 x값을 삽입한다.

• v.insert(p, b, e) : p가 가리키는 위치에 반

복자 구간[b, e) 원소를 삽입한다.

• v.push_back(x) : v의 끝에 x를 추가한다

• v.pop_back() : 마지막 원소를 제거한다.

• v.earase(iterator) : 반복자가 가리키는 걸

지움

• v.clear() : v의 모든 원소를 제거한다.

236



vector container

▪ 1차원 벡터의 순회 ▪ 2차원 백터의 순회

237

#include <stdio.h>

#include <vector>

using namespace std;

int main() {

    // 벡터안에 벡터를 보관하는 형태

    vector<vector<int>> v =

       { {3, 1}, {2, 1, 5}, {6} };

    for(int i=0; i<v.size(); i++) {

        for(int j : v[i])

            printf("%d ", j);

        putchar('\n');

    }

}

pair: https://ya-ya.tistory.com/91

#include <stdio.h>

#include <vector>

using namespace std;

int main() {

    vector <int> v = {6, 2, 9, 7};

    //방법1

    for(int i=0; i<v.size(); i++) {

       printf("%d ", v[i]);

    }

    putchar('\n');

    //방법2

    for(int i : v) {

       printf("%d ", i);

    }

}

6 2 9 7

3 1

2 1 5

6v:

v[0]:

v[1]:

v[2]:

//  v[0]     v[1]        v[2]





deque container

▪ deque (double ended queue)

• #include <deque> 필요

• 양쪽 끝에서 삭제와 입력 모두 수행 가능

• 메모리의 할당 정책과정에서 vector의

단점을 개선

• 데크 끝과 시작 부분에 효율적으로 원소

를 추가하거나 삭제 가능

▪ 특징

• 벡터와는 달리 모든 원소가 메모리

상에 연속적으로 존재하지 않을 수

있음

▪ 컨테이너 비교



deque container

▪ 할당관련 메소드

(참고로 벡터와는 다르게 capacity 와

reserve 없음)

• size : 데크의 size 를 리턴한다 (현

재 원소의 개수)

• max_size : 데크 최대 크기를 리턴

• resize : 데크가 size 개의 원소를 포

함하도록 변경

• empty : 데크가 비었는지 체크

▪ 수정자(Modifier) 메소드

• assign : 데크에 원소를 집어넣는다.

• push_back : 데크 끝에 원소를 집어

넣는다.

• push_front : 데크 맨 앞에 원소를 집

어 넣는다.

• pop_back : 마지막 원소를 제거한다.

• pop_front : 첫번째 원소를 제거한다.

• insert : 데크 중간에 원소를 추가

• erase : 원소를 제거한다.

• swap : 다른 데크와 원소와 교환한다.

• clear : 원소를 모두 제거한다.



deque container

▪ deque의 사용 예시

242

#include <iostream>

#include <vector>

#include <deque>

using namespace std;

// dq의 모든 내용물 출력하기

template <typename T>

void print_deque(deque<T>& dq) {

typename deque<T>::iterator itr;

  cout << "[ ";

  for (itr = dq.begin(); itr != dq.end(); itr++) {

    cout << *itr << " ";

  }

  cout << "]" << endl;

}

int main() {

    deque<int> d {0, 0, 0};

    d.push_back(1);

    d.push_front(2);

    vector<int> v {3, 4, 5, 6};

    d.insert(d.begin(), v.begin(), v.end());

    d.pop_front();

    d.erase(d.begin()+2, d.begin()+5);

    print_deque(d);

    for(int x: d) cout << x << " ";

}





STL iterator
1. vector에 적용 예시Standard Template Library

244



STL 반복자 (iterator)

▪ 원소의 삽입과 삭제 (반복자의 활용)

245

#include <iostream>

#include <vector>

using namespace std;

// 컨테이너의 종류와 내용물을 타입에 상관없이 작동

template <typename Iter>

void print_elements(Iter begin, Iter end) {

  cout << "[ ";

  while (begin != end) {

    cout << *begin << " ";

    begin++;

  }

  cout << "]" << endl;

}

int main() {

  // index           0,1,2,3,4,5,6,7,8,9

  vector <int> v = { 1,2,3,4,5,6 };

cout << "처음 벡터 상태" << endl;

  print_elements(v.begin(), v.end());

  v.insert(v.begin()+6, 1);

  v.insert(v.begin()+6, 2);

  v.insert(v.begin()+6, 3);

  cout << "insert() 이후 " << endl;

  print_elements(v.begin(), v.end());

  cout << "값이 2 인 원소를 삭제" << endl;

  for(int i=0; i<v.size(); i++) {

    if(v[i] == 2) {

      v.erase(v.begin() + i);

      //i번 인덱스 원소가 삭제됐고 뒷 내용물이 앞으로 당겨짐.

      i--; //그래서 i를 감소시켜야 함.

    }

  }

  print_elements(v.begin(), v.end());

}



STL algorithm
1. sort

2. copy

3. remove_if

4. tramsform

5. find

6. for_each

Standard Template Library

247



STL 알고리즘 sort (primitive type)

▪ 기본 데이터 타입 sort 예시

#include <iostream>

#include <array>

#include <vector>

#include <deque>

#include <algorithm>

using namespace std;

template <typename Iter>

void print_elements(Iter begin, Iter end) {

  cout << "[ ";

  while (begin != end) {

    cout << *begin << " ";

    begin++;

  }

  cout << " ]" << endl;

}

bool asc_order (int a, int b) { return a<b; }

bool desc_order(int a, int b) { return a>b; }

int main() {

    int ary[] = { 5,3,1,2,4,3,7 };

    cout << "initial array sequence\n";

    print_elements(begin(ary), end(ary));

    vector<int> vec(begin(ary), end(ary));

    cout << "initial vector sequence\n";

    print_elements(vec.begin(), vec.end());

    cout << "vector sort\n";

    sort(vec.begin(), vec.end());

    print_elements(vec.begin(), vec.end());

    cout << "vector sort by asc_order()\n";

    sort(vec.begin(), vec.end(), asc_order);

    print_elements(vec.begin(), vec.end());

    cout << "deque sort by desc_order()\n";

    sort(vec.begin(), vec.end(), desc_order);

    print_elements(vec.begin(), vec.end());

}



STL 알고리즘 sort (primitive type)

▪ 기본 데이터 타입 sort 예시

#include <iostream>

#include <array>

#include <vector>

#include <deque>

#include <algorithm>

using namespace std;

template <typename Iter>

void print_elements(Iter begin, Iter end) {

  cout << "[ ";

  while (begin != end) {

    cout << *begin << " ";

    begin++;

  }

  cout << " ]" << endl;

}

int main() {

    int ary[] = { 5,3,1,2,4,3,7 };

    cout << "initial array sequence\n";

    print_elements(begin(ary), end(ary));

vector<int> vec(begin(ary), end(ary));

    cout << "initial vector sequence\n";

    print_elements(vec.begin(), vec.end());

    cout << "vector sort by iterator\n";

    sort(vec.begin(), vec.end());

    print_elements(vec.begin(), vec.end());

    cout << "vector sort by reverse iterator\n";

    sort(vec.rbegin(), vec.rend());

    print_elements(vec.begin(), vec.end());

    deque<int> deq(begin(ary), end(ary));

    cout << "initial deque sequence\n";

    print_elements(deq.begin(), deq.end());

    cout << "deque sort by less<int>()\n";

    sort(deq.begin(), deq.end(), less<int>());

    print_elements(deq.begin(), deq.end());

    cout << "deque sort by greater<int>()\n";

    sort(deq.begin(), deq.end(), greater<int>());

    print_elements(deq.begin(), deq.end());

}



STL 알고리즘 sort (custom type)

▪ 사용자 정의 타입 sort 예시

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

struct noco {

    int node;

    int cost;

};

template <typename Iter>

void print_elements(Iter begin, Iter end) {

  while (begin != end) {

    cout << *begin << "\n";

    begin++;

  }

}

ostream& operator<<(ostream& os, const noco& nc) {

    os << '(' << nc.node << ", " << nc.cost << ')';

    return os;

}

int main() {

    vector<noco> nc;

    nc.push_back({1, 90});

    nc.push_back({2, 80});

    nc.push_back({3, 70});

    nc.push_back({4, 60});

    nc.push_back({3, 75});

    nc.push_back({3, 85});

    nc.push_back({4, 85});

    nc.push_back({4, 65});

    // sort() 함수를 사용하려하면,

    // < 연산자가 정의되지 않았다는 에러가 발생한다.

    //sort(nc.begin(), nc.end());

    print_elements(nc.begin(), nc.end());

}



STL 알고리즘 sort (custom type) cont.

▪ 사용자 정의 타입 sort 예시

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

struct noco {

    int node;

    int cost;

    //noco(int node, int cost) : node(node), cost(cost) {}

    //sort() 함수가 사용할 < 연산자를 정의한다.

    bool operator<(const noco& nc) {

        if(cost != nc.cost)  // cost가 다르면,

            return cost > nc.cost;  // cost 내림차순

        else  // cost가 같으면,

            return node > nc.node;  // node 내림차순

    }

};

 :

:

  :

int main() {

    vector<noco> nc;

    nc.push_back({1, 90});

    nc.push_back({2, 80});

    nc.push_back({3, 70});

    nc.push_back({4, 60});

    nc.push_back({3, 75});

    nc.push_back({3, 85});

    nc.push_back({4, 85});

    nc.push_back({4, 65});

    sort(nc.begin(), nc.end());

    print_elements(nc.begin(), nc.end());

}



queue container

▪ Queue

• 대표적인 FIFO(First In First Out) 

구조

• 기본 메소드

• push, pop, empty, front, back

▪ 선언과 사용 예

253

#include <stdio.h> 

#include <queue> 

using namespace std;

 

int main(void) { 

    queue<int> q; 

    q.push(1);     q.push(2); 

    q.push(10);    q.push(20); 

        

    while(!q.empty()) { 

        printf("%d\n", q.front()); 

        q.pop();  // 윈소 제거

    } 

}

뒤 앞



queue container

▪ Queue의 내용물을 확인하려면?

254

int main(void) { 

    queue<int> q; 

   

    // Q에 1부터 10사이 홀수를 채운다.

    for(int i=1; i<10; i+=2) {

        q.push(i);

    } 

 

    output_Q(q);

}

#include <stdio.h> 

#include <queue> 

using namespace std; 

// 아래와 같이 복사본을 인수로 받아서 확인한다.

// pop()을 호출하는 순간 큐의 내용물이 바뀌기 때문

void output_Q(queue<int> Q) {  

  printf("Q:[");

  while(!Q.empty()) {

    printf("%2d ", Q.front());

    Q.pop();

  }

  printf("], ");

}

q 1 3 5 7 9Q 1 3 5 7 9



힙(heap)

▪ 정의

• 영단어 힙(heap)은 ＇무엇인가를 차곡

차곡 쌓아올린 더미＇라는 뜻

• 힙은 완전 이진 트리*로 구현된 자료구

조

• 가장 크거나 작은 값을 찾아내는 연산

을 빠르게 하기위해 고안된 자료구조

▪ 힙의 종류

• 최대힙(Max Heap) : 부모 노드의 값이

무조건 자식 노드의 값보다 큰 힙

• 최소힙(Min Heap) :부모 노드의 값이

무조건 자식 노드의 값보다 작은 힙

*완전 이진트리(complete binary tree)란? 

마지막 레벨을 제외하고 모든 레벨이 완전히

채워져 있는 트리이다.



힙(heap)

▪ 최대힙의 예

• Root의 값이 가장 크다. 

• 또한 모든 서브트리에 대해서도 같다.

▪ 자료의 추가

1) 새로운 노드를 트리의 맨 뒤에 추

가한다. (완전 이진 트리의 형태를

깨면 안됨)

2) 추가된 노드와 부모 노드를 비교하

여 자식 노드가 크다면 서로의 위

치를 바꾼다.

3) 2번 작업을 부모 노드가 더 클 때

까지 반복한다.



힙(heap)

MaxHeap에 50의 값을 가진 노드를 추가하려는 상황이다. 그러면 이 노드는

트리의 맨 뒤인 13의 rightChild로 들어가게 된다.

50의 부모노드인 13과 비교한다. 

50이 크므로 둘의 자리를 바꿔준다.

자리를 바꾸고 또 바꾼 자리의 부모노드인 44와 비교한다. 또 50이 크므로

자리를 바꿔준다.

부모 노드인 55와 비교하지만 55가 크므로 자리를 고정하고 자료의 추가가

완료된다.

1)

2)

3)

4)



힙(heap)

▪ 자료의 삭제

• 자료가 삭제되는 경우는 맨 위에 있는

Root노드가 빠지는 경우밖에 없다. 

• 그렇게되면 다시 힙의 형태를 갖추어야

…

▪ 삭제 알고리즘

1) 맨 뒤에 있는 노드를 Root자리로

옮긴다.

2) 자식 노드 중 값이 더 큰 노드와

비교하여 자식 노드가 값이 더 크

다면 위치를 바꾼다.

3) 2번의 작업을 자식 노드보다 자신

이 클 때까지 반복한다.



힙(heap)

Root노드가 빠진 상황이다. 이렇게 되면 맨뒤에 있던 노드인 10을 Root로

올린다.

Root로 올리고 자식들과 비교를 시작하게 되는데, 자식 둘 중에 44가 더

크므로 44와 비교를 한다. 그런데 44가 10보다 크므로 44와 자리를 바꾼다.

자리를 바꾸고 다시 같은 작업을 반복한다. 11과 13중 13이 크므로 13과

비교한다. 13이 더크므로 자리를 바꾼다.

그 결과 이렇게 힙의 구조를 다시 유지할수 있게 되었다.

1)

2)

3)

4)



priority_queue container

▪ 메소드 정리

• bool empty();

• 비어있으면 true 반환

• 비어있다는 것은 size가 0 이기도함.

• size_type size();

• 원소의 개수를 반환합니다.

• value_type& top();

• 맨 위에있는 원소를 참조 및 반환 합

니다(삭제하는거 아님에 유의)

• void push(value_type& val);

• 인자를 삽입합니다. 내부적으로는

push_back 함수를 이용하여 삽입이

됩니다.

• void pop();

• 맨위에있는 인자를 삭제합니다.

• 내부적으로는 pop_heap 알고리즘과

pop_back 함수가 이용되어 우선순위

큐 형태를 유지합니다.



priority_queue container

▪ 우선순위 큐 테스트 ▪ min heap(최소값 우선)으로 하려면?
#include <iostream>

#include <queue>

using namespace std;

int main() {

    //priority_queue<자료형, 구현체, 비교연산자>

    priority_queue<int, vector<int>, greater<int>> pq;

    pq.push(45);

    pq.push(90);

    pq.push(30);

    pq.push(10);

    pq.push(49);

    pq.push(22);

    pq.push(14);

    while(!pq.empty()) {

        int t = pq.top(); pq.pop();

        cout << t << ' ';

   }

}

#include <iostream>

#include <queue>

using namespace std;

int main() {

    priority_queue <int> pq;

    pq.push(45);

    pq.push(90);

    pq.push(30);

    pq.push(10);

    pq.push(49);

    pq.push(22);

    pq.push(14);

    while(!pq.empty()) {

        int t = pq.top(); pq.pop();

        cout << t << ' ';

   }

}

max heap 으로 작동함. min heap 으로 작동함.



priority_queue container

▪ operator< 오버로딩 방법

int main() {

    priority_queue <noco> pq;

    pq.push({1, 90});

    pq.push({2, 80});

    pq.push({3, 70});

    pq.push({4, 60});

    pq.push({3, 75});

    pq.push({3, 85});

    pq.push({4, 85});

    pq.push({4, 55});

    while(!pq.empty()) {

        noco t = pq.top();

        printf("[%d] (%d)\n", t.node, t.cost);

        pq.pop();

    }

    return 0;

}

#include <iostream>

#include <queue>

using namespace std;

struct noco {

    int node;

    int cost;

    // 'cost오름차순, node오름차순' 으로 설계

    bool operator<(noco nc) const {

    //C++에서 우선순위 큐는 기본 최대힙(오름차순)으로 구현

    //되어있으므로 반대 논리값을 리턴해야 함.

        if(cost != nc.cost)

            return cost > nc.cost; // 오름차순

else

            return node > nc.node;

    }

};

만약 'node내림차순, cost오름차순' 으로 설계하려면?



문제: 창고

▪ 문제

정올이는 N개의 상자를 가지고 있다. 이 중

K개의 상자를 창고에 보관해 두고, 필요할

때 사용하려 한다.

각 상자에는 1~N번까지 번호가 붙여져 있으

며, (Wi 너비 * Hi 높이)인 직사각형 모양

을 하고 있다.

상자에 들어있는 자재들은 너무 무겁기에, 

상자 위에 상자를 쌓는 것은 불가능하다. 

또한, 눕히면 자재들이 부서질 위험이 있어, 

상자는 돌리지 않고 현재 상태 그대로 창고

에 순서대로 보관해야 한다.

K개의 상자를 보관하기 위해서, 창고는 전

체 K개의 상자의 너비합에 해당하는 너비와,

K개의 상자의 높이 중 최댓값을 가지는 높

이를 가지도록 만들 예정이다.

이때, 창고가 사용하는 공간의 크기를 최소

화하기 위해, 충북이는 창고가 사용하는 넓

이(너비 x 높이)를 최소화하도록 K개의 상

자를 선택할 것이다.

그러나 충북이는 어떠한 상자들을 선택해야

창고 넓이가 최소가 되는지 구하기 어려워

하고 있다. 충북이를 대신해, 지어야 하는

창고의 최소 넓이를 알려주자.

• 출처: 2023 충북정올 학교예선 중등부 5번 문제

3개의 상자를 담은 5*4 창고 예시

우선순위 큐부터 배우고 올 것.



문제: 창고

▪ 입력형식

첫 줄에 정수 N, K가 공백을 사이에 두고

주어진다. N은 상자의 수, K는 보관해야

하는 상자의 수를 의미한다.

다음 N개의 줄 중 i번째 줄에는 i번째 상

자의 너비와 높이 Wi, Hi가 공백을 사이

에 두고 주어진다.

• 1 ≤K ≤ N≤ 100,000

• 1 ≤Wi, Hi ≤ 1,000,000

▪ 출력형식

K개의 상자를 선택해, 지어야 하는 창고

의 최소 넓이를 출력한다.

▪ 입력과 출력의 예

• 출처: 2023 충북정올 학교예선 중등부 5번 문제

입력 예1 출력 예1

4 3

2 3

2 1

1 4

4 5

20

입력 예2 출력 예2

4 1

5 4

3 6

1 19

2 10

18



문제: 창고

▪ 고찰

• 어떤 상자를 선택해야 창고의 너비가

최소가 될 것인가?

• width * height 가 최소가 되려면 너비

와 높이 둘 다 작아야 유리하다.

• 일단 높이를 기준으로 정하여 정렬하고

작은 것들 우선 선택해본다.

• 하지만 이것이 최상의 답이라는 보장이

없으므로 선택된 상자 중 최악의 너비

를 제거하고 남은 상자들을 추가해 보

다 나은 답을 계속 찾는다.

▪ 최악의 너비 찾기

• 우선순위큐는 최대힙을 구성하므로 상

자의 너비들을 이 큐에 넣어 놓으면, 

자동으로 최상단에 가장 큰 너비가 위

치한다.

• 1순위 교체 대상인 가장 큰 너비를 빠

르게 찾을 수 있다.



268

// 창고 정답 풀이

#include <iostream>

#include <queue>

#include <algorithm>

#include <limits.h>

#define llong long long

using namespace std;

struct box {

    int w, h;

    // box 구조체의 정렬 방법 정의

    bool operator<(const box& b) {

        if(h != b.h)  return h < b.h; //h 오름차순

else return w < b.w;  //w 오름차순

}

} box[1000000];

int n, k;

llong res=LLONG_MAX, width;

// 선택된 상자의 너비를 보관할 예정

priority_queue <int> pq; 

int main() {

    int i;

    scanf("%d %d", &n, &k);

    for(i=0; i<n; i++)

        scanf("%d %d", &box[i].w, &box[i].h);

    sort(box, box + n);

    for(i=0; i<k-1; i++) { // 높이가 작은거부터 k-1개의 상자 선택하여

width += box[i].w; // 너비 합

pq.push(box[i].w); // 너비 푸시

}

    //k번(인덱스는 k-1임) 상자부터 마지막 상자까지 한 개씩 교환해가며 너비계산

for(i=k-1; i<n; i++) {

        width += box[i].w;  // i번 상자 너비 추가

pq.push(box[i].w);  // i번 상자 너비 푸시

//상자의 높이 기준 오름차순 정렬을 해 놓은 상태이므로,

        //i번 앞쪽에 배치된 모든 상자의 높이는 box[i].h 보다 작을 수밖에 없다.

        res = min(res, width * box[i].h);

        // 선택된 상자 중 너비가 가장 큰 상자 제거

width -= pq.top();

        pq.pop();

    }

    printf("%lld", res);

    return 0;

}



창고 해답 작동 추적하기

▪ 작동 추적

•  5개 상자 입력, 창고에 3개 보관

269

// 아래와 같이 main() 함수를 수정하여 작동을 추적해 보자.

int main() {

    int i;

    scanf("%d %d", &n, &k);

    for(i=0; i<n; i++)

        scanf("%d %d", &box[i].w, &box[i].h);

    sort(box, box + n);

    puts("\n정렬 이후:");

    for(i=0; i<n; i++)

        printf("(%d,%d)\n", box[i].w, box[i].h);

    putchar('\n');

    for(i=0; i<k-1; i++) { // 높이가 작은거부터 k-1개의 상자 선택하여

width += box[i].w; // 너비 합

pq.push(box[i].w); // 너비 푸시

printf("(%d,%d) 선택\n", box[i].w, box[i].h);

    }

    //k번(인덱스는 k-1임) 상자부터 마지막 상자까지 한 개씩 교환해가며 너비계산

for(i=k-1; i<n; i++) {

        width += box[i].w;  // i번 상자 너비 추가

pq.push(box[i].w);  // i번 상자 너비 푸시

//상자의 높이 기준 오름차순 정렬을 해 놓은 상태이므로,

        //i번 앞쪽에 배치된 모든 상자의 높이는 box[i].h 보다 작을수 밖에 없다.

        printf("(%d,%d) 추가 선택시 너비: %d, 넓이: %d\n\n", 

                box[i].w, box[i].h, width, width*box[i].h);

        res = min(res, width * box[i].h);

        // 선택된 상자 중 너비가 가장 큰 상자 제거

width -= pq.top();

        printf("가장 큰 상자 너비 %d 제거, 현재 너비 %d\n", pq.top(), width);

        pq.pop();

    }

    printf("%lld", res);

    return 0;

}

5 3
1 6
2 5
3 4
4 3
5 2

높이 기준
오름차순
정렬됨

k-1 개 선택한 상태에서



자료구조

선형구조와 비선형구조

270



자료구조

▪ 자료구조(data structure)

• 전산학에서 자료를 효율적으로

이용할 수 있도록 컴퓨터에 저

장하는 방법이다. 

• 신중히 선택한 자료구조는 보

다 효율적인 알고리즘을 사용

할 수 있게 한다.

27
1



선형구조

▪ 선형구조란?

• 자료를 구성하는 데이터를 순차적으

로 나열시킨 형태를 의미

▪ 탐색법

• 순차탐색

• 이분탐색

272



선형구조

▪ 배열

• 고정 배열, 동적 배열(vector)

▪ 리스트

• 연결리스트, 이중연결, 원형연결 리

스트

▪ 스택

• 후입선출(Last In First Out)

▪ 큐

• 선입선출(First In First Out)

▪ 데크

• Double Ended Queue

273

앞

뒤바닥

앞

뒤



비선형구조

▪ 비선형구조란 i번째 원소를 탐색한 다음 그

원소와 연결된 다른 원소를 탐색하려고 할

때, 여러 개의 원소가 존재하는 탐색구조

▪ 트리나 그래프로 구성된 경우

▪ 선형과 달리 자료가 순차적이지 않으므로

단순히 반복문을 이용하여 탐색하기 어려움

▪ 비선형구조는 스택이나 큐와 같은 자료구조

를 활용하여 탐색

▪ 비선형구조 탐색법

• 깊이우선탐색(DFS, depth first search)

• 너비우선탐색(BFS, breadth first searh)
▪ 그래프 중에 회로가 없는 그래프를 트리

라고 한다.

274



비선형구조 - 그래프

▪ 정점(vertex)

• 노드(node)라 부르기도 한다

▪ 간선(edge)

• 일반간선, 가중치 간선

• 방향간선, 양방향간선, 무방향간선

▪ 경로(path)

• 임의의 정점 s에서 임의의 정점 t로

이동할 때, s에서 t로 이동하는데 사

용한 정점들을 연결하고 있는 간선들

의 순서로된 집합

▪ 회로(cycle)

• 그래프에서 임의의 정점 s에서 같은

정점 s로의 경로들

275



비선형구조 - 그래프

▪ 자기간선(loop)

• 임의의 정점에서 자기 자신으로 연결

하고 있는 간선

▪ 다중간선(multi edge)

• 임의의 정점에서 다른 점점으로 연결

된 간선의 수가 2개 이상일 경우

▪ 그래프의 차수

• 그래프의 임의의 한 정점에서 다른

정점으로 연결된 간선의 수

276



비선형 탐색

비선형구조의 전체탐색(DFS vs BFS)

277



탐색

▪ 깊이우선탐색(DFS) ▪ 너비우선탐색(BFS)

278

DFS(깊이우선탐색) BFS(너비우선탐색)

현재 정점에서 갈 수 있는 점들까지 들어가면서 탐색 현재 정점에 연결된 가까운 점들부터 탐색

스택 또는 재귀함수로 구현 큐를 이용해서 구현



탐색

▪ 깊이우선탐색(DFS)

• 최대한 깊이 내려간 뒤, 더이상 깊이

갈 곳이 없을 경우 옆으로 이동

• 루트 노드(혹은 다른 임의의 노드)에서

시작해서 다음 분기(branch)로 넘어가

기 전에 해당 분기를 완벽하게 탐색하

는 방식

▪ 평가

1. 깊이 우선 탐색(DFS)이 너비 우선 탐

색(BFS)보다 좀 더 간단함

2. 검색 속도 자체는 너비 우선 탐색

(BFS)에 비해서 느림

▪ 너비우선탐색(BFS)

• 최대한 넓게 이동한 다음, 더 이상

갈 수 없을 때 아래로 이동

• 루트 노드(혹은 다른 임의의 노드)에

서 시작해서 인접한 노드를 먼저 탐

색하는 방법

• 시작 정점으로부터 가까운 정점을 먼

저 방문하고 멀리 떨어져 있는 정점

을 나중에 방문하는 순회 방법

279



트리구조의 깊이우선탐색(DFS)

▪ 트리 구조 ▪ 스택을 이용한 DFS 순회

• dfs(1)

• dfs(2),dfs(7),dfs(8)

• dfs(3),dfs(6),dfs(7),dfs(8)

• dfs(4),dfs(5),dfs(6),dfs(7),dfs(8)

• dfs(5),dfs(6),dfs(7),dfs(8)

depth=0

depth=1

depth=2

depth=3

1

2

7

8

1 2

3

7

8

6

3

4

4

5

7

8

6

5

7

8

6

5

7

8

6

6

7

8

7

8

8

9

12

9

12

10

11

10

12

11

11

12

12

계속 앞에
끼어든다



▪ 중복있고 순서있는 순열 조합

• 중복 있다

• 같은 숫자 다시 등장 가능

• 순서 있다

• 순서 다른 조합을 다른 것으로 간주

▪ 그래프로 표현

• 0,1,2 중에서 뽑을 때,

• 매 단계에서 3갈래로 갈라짐

281

0-0-0  // 
0-0-1  // OK
0-0-2  // OK
0-1-0  // OK

// 아래는 모두 다른 조합
0-1-2
1-2-0
2-1-0

Φ

0 1 2

1 2

DFS 활용 순열 조합 1

0 1 20 1 20

1 2 0 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 00

depth=0

depth=1

depth=2

depth=3



DFS 활용 순열 조합 1

282

void dfs(int depth, vector<int>& v) {

    // 뽑은 개수 상관없이 작업하려면 여기에서

output(depth, v);

    if(depth==r) {  // r개 모두 뽑았으면,

        //output(depth, v);

        return;     // 더 갈라지지 말고 돌아가!

    }

    //매 갈림길에서 똑같이 n개로 갈라짐을 구현

for(int i=0; i<n; i++) {

        v.push_back(d[i]); // d[i] 선택 후,

        dfs(depth+1, v);   // dfs 탐색 재실행

        v.pop_back();      // dfs가 탐색 종료 후 d[i]제거

    }

}

int main() {

    // n개의 데이터 중에서 r개 뽑기

scanf("%d %d", &n, &r);

    vector<int> v;

    dfs(0, v);  // depth 0에서 r까지 가면 끝남

return 0;

}

//중복있고 순서있는 순열 조합 만들기 (DFS구현)

#include <stdio.h>

#include <vector>

using namespace std;

int n, r;

int d[] = {0,1,2,3,4,5,6,7,8,9};

void output(int depth, vector<int>& vec) {

    printf("[%d] ", depth);

    for(int a : vec)

        printf("%d-", a);

    printf("\b \n");

}



DFS 활용 순열 조합 1

▪ 실행 분석 ▪ 소스코드

283

void dfs(int depth, vector<int>& v) {

    // depth는 뽑은 개수를 의미

    if(depth==r) {  // r개 모두 뽑았으면,

        output(depth, v);

        return;     // 더 갈라지지 말고 돌아가!

    }

    //매 갈림길에서 똑같이 n개로 갈라짐을 구현

for(int i=0; i<n; i++) {

        // depth 레벨에서 d[i] 선택 후,

        v.push_back(d[i]); 

        // depth+1 레벨 dfs 시작

        dfs(depth+1, v);

        // dfs() 종료되면 = 백트랙하면

        v.pop_back();

    }

}

Φ

0 1 2

1 20 1 20 1 20

1 2 0 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 00

depth=0

depth=1

depth=2

depth=3



합이 k가 되는 수열 만들기(중복허용)

▪ 문제

1에서 9사이 서로 다른 자연수 n개가 주어진다.

주어진 숫자 만을 사용하여 길이가 r인 수열을

만든다.

(만드는 수열은 중복을 허용하고, 순서가 다르

면 다른 것으로 본다)

생성한 모든 수열 중에서, 수열에 포함된 숫자

들의 합이 정확히 k가 되는 경우의 수를 구하

여라.

만약 숫자 1 2 3 를 이용하여 2자리 수열을 만

들어 합이 3이 되는 경우를 수를 구한다면,

(1,3) (2,2) (3,1)

이렇게 3가지가 존재한다.

▪ 입력

n

a₁ a₂ a₃ ... aₙ

r

k

▪ 출력

조건을 만족하는 수열의 개수를 출력한다.

▪ 입력과 출력의 예

285

입력 예 출력 예

3
1 2 3
2
4

3

n: 사용할 수 있는 수의 개수

(1 ≤ n ≤ 9)

a₁, a₂, ..., aₙ: 사 용 할 수

있는 n개의 자연수(1 ≤ aᵢ ≤ 9)

r: 수열의 길이(1 ≤ r ≤ 5)

k: 만들고자 하는 합

DFS1



합이 k가 되는 수열 만들기

287

void output(vector<int>& vec) {

    for(int a : vec)

        printf("%d-", a);

    printf("\b \n");

}

void dfs(int depth, int sum, vector<int>& v) {

    if(depth == r) {

        if(sum == k) {

            //output(v);

            ans++;

        }

        return;

    }

    for(int i=0; i<n; i++) {

        v.push_back(d[i]);

        dfs(depth+1, sum + d[i], v);

        v.pop_back();

    }

}

#include <stdio.h>

#include <vector>

#define MAX_N 10

using namespace std;

int n, r, k;

int d[MAX_N];

int ans = 0;

int main() {

    scanf("%d", &n);

    for(int i=0; i<n; i++) {

        scanf("%d", &d[i]);

    }

    scanf("%d\n%d", &r, &k);

    vector<int> v;

    dfs(0, 0, v);

    printf("%d\n", ans);

    return 0;

}



▪ 중복없고 순서있는 순열 조합

• 중복 없다

• 같은 숫자 다시 등장 불가능

• 순서 있다

• 순서 다른 조합을 다른 것으로 간주

▪ 그래프로 표현

• 0,1,2 중에서 뽑을 때,

• 매 단계에서 3갈래로 갈라짐

288

0-0-1  // !
0-1-1  // !
0-1    // OK
0-1-2  // OK

// 아래는 모두 다른 조합
0-1-2
1-2-0
2-1-0

Φ

0 1 2

1 2

DFS 활용 순열 조합 2

0 1 20 1 20

1 20 1 20 1 20 1 00 1 20 1 20 1 20 1 20 1 20

depth=0

depth=1

depth=2

depth=3



DFS 활용 순열 조합 2

289

void dfs(int depth, vector<int>& v) {

    if(depth==r) {

        output(depth, v);

        return;

    }

    // 매 노드에서 n개의 노드로 갈라짐을 구현

for(int i=0; i<n; i++) {

        if(!used[i]) {

            v.push_back(d[i]); // 사용한 노드

used[i] = 1;  // 사용했음을 표시

dfs(depth+1, v);

            used[i] = 0;  // 사용했음표시 취소

v.pop_back();

        }

    }

}

int main() {  // n개의 데이터 중에서 r개 뽑기

    scanf("%d %d", &n, &r);

    vector<int> v;

    dfs(0, v);

    return 0;

}

// 중복없고 순서있는 순열 조합 만들기 (DFS구현)

#include <stdio.h>

#include <vector>

using namespace std;

int n, r;

int    d[] = {0,1,2,3,4,5,6,7,8,9};

int used[] = {0,0,0,0,0,0,0,0,0,0}; // 사용 여부를 저장

void output(int depth, vector<int>& vec) {

    printf("[%d] ", depth);

    for(int a : vec)

        printf("%d-", a);

    printf("\b \n");

}



숫자 카드로 수열 만들기Ⅰ

▪ 문제

1부터 9사이 숫자가 적힌 카드 n개가 주어졌

을 때, 이 숫자 카드를 나열하여 만들어 낼 수

있는 r자릿수의 숫자 중

2의 배수와 3의 배수가 몇 개 인지 출력하는

프로그램을 작성하시오.

예를 들어, 2 3 4 가 적힌 세 개의 카드를 나열

하여 만들어 낼 수 있는 2자리 숫자는

23, 24, 32, 34, 42, 43 이 가능하고,

2의 배수는 4개(24, 32, 34, 42)이고,

3의 배수는 2개(24, 42)이다.

▪ 입력

n

a₁ a₂ a₃ ... aₙ

r

▪ 출력

첫 번째 줄에 2의 배수가 몇 개 만들어지는지 

출력하고, 

두 번째 줄에 3의 배수가 몇 개 만들어지는지

출력한다.

▪ 입력과 출력의 예

291

입력 예 출력 예

3
2 3 4
2

4
2

n: 주어진 숫자 카드의 개수 n

(1 ≤ n ≤ 9)

a₁, a₂, ..., aₙ: 카드에 적힌

숫자 목록(1 ≤ aᵢ ≤ 9)

r: 숫자의 자릿수(1 ≤ r ≤ 8)

DFS2



숫자 카드로 수열 만들기 Ⅰ

292

void dfs(int depth, int num) {

    if(depth==r) {

        printf("%d %d%d\n", num, num%2==0, num%3==0);

        if(num%2==0) cnt2++;

        if(num%3==0) cnt3++;

        return;

    }

    // 매 노드에서 n개의 노드로 갈라짐을 구현

for(int i=0; i<n; i++) {

        if(!used[i]) {

            used[i] = 1;  // 사용했음을 표시

num = num*10+d[i]; //d[i]를 추가하여 만든 수

            dfs(depth+1, num);

            num = (num-d[i])/10; //d[i] 추가전으로 복원

            used[i] = 0;  // 사용했음 표시 취소

}

    }

}

#include <stdio.h>

#define  MAX_N   10

using namespace std;

int n, r;

int d[MAX_N];

int used[MAX_N]; // 사용 여부를 저장하는 배열

int cnt2=0, cnt3=0; // 배수 카운터

void dfs(int depth, int num);

int main() {

    scanf("%d", &n);

    for(int i=0; i<n; i++) {

        scanf("%d", &d[i]);

    }

    scanf("%d", &r);

    dfs(0, 0);

    printf("%d\n%d\n", cnt2, cnt3);

    return 0;

}



숫자 카드로 수열 만들기 Ⅱ

▪ 문제

아래 그림과 같이 책상 위에 숫자 카드 9장이 놓여 있다.

이 카드 중 일부 n개를 선택한 뒤, 이 카드를 나열하여 만

들어 낼 수 있는 모든 n 자릿수의 숫자들을 상상해 보자.

이 숫자들을 오름차순 정렬하였을 때 k 번 째에 해당하는

수가 무엇인지 알아내는 프로그램을 작성하시오.

예를 들어 5 2 3 이렇게 3장의 숫자 카드를 나열하여 만

들어낼 수 있는 숫자들을 오름차순으로 나열하면

235, 253, 325, 352, 523, 532 이고, 이 중 6번째 숫자는

532이다.

▪ 입력

첫 번째 줄에 선택된 숫자 카드의 개수 n이 입력된

다. (1 ≤ n ≤ 9) 

두 번째 줄에 선택된 카드에 적힌 숫자들이 공백으

로 분리되어 입력된다. 

세 번째 줄에 k가 입력된다.

▪ 출력

선택된 숫자 카드를 나열하여 만들어 낼 수 있는 수들을

오름차순 정렬하였을 때 k번째에 해당하는 수를 출력한

다.

만약 k번째에 해당하는 수가 없다면 아무것도 출력하지

마시오.

293

입력 예 출력 예

3 
2 3 5 
6

532

DFS2



숫자 카드로 수열 만들기 Ⅱ

295

bool dfs(int depth, int num) {

    if(depth==n) {

        cnt++;

        if(cnt == k) {

            ans = num;

            return true;

        }

    }

    for(int i=0; i<n; i++) {

        if(!used[i]) {

            used[i] = 1;  

if(dfs(depth+1, num*10+d[i]))

                return true;

            used[i] = 0;  

}

    }

    return false;

}

#include <iostream>

#include <vector>

#define  MAX_N    10

using namespace std;

int n, k, cnt=0;

int    d[MAX_N];

int used[MAX_N];

int ans=0;

bool dfs(int depth, int num) ;

int main() {  // n개의 데이터 중에서 r개 뽑기

cin >> n;

    for(int i=0; i<n; i++)

        cin >> d[i];

    cin >> k;

    if(dfs(0, 0)) cout << ans;

    return 0;

}



▪ 그래프로 표현

• 0,1,2,3 중에서 뽑을 때,

• 자신 노드보다 큰 수로만 뻗어 나감

▪ 중복없고 순서없는 순열 조합

• 중복 없다

• 같은 숫자가 또 등장하지 않음

• 순서 없다

• 순서 다른 조합을 동일한 것으로 간주

296

0-0-1  // !
0-1-1  // !
0-1    // OK
0-1-2  // OK

// 아래는 모두 동일한 조합
0-1-2
0-2-1
2-1-0

Φ

0 1 2 3

1

2

3

3

2

3

2

4

3 3

DFS 활용 순열 조합 3

3



DFS 활용 순열 조합 3

297

void dfs(int start) {

    nth++;  // 호출 횟수 증가

    output();

    // 여기에서 종료 조건 확인 및 최종 계산

    //start부터 그 이후 원소들로만 뻗어나감을 구현

for (int i = start; i < n; i++) {

        //i번 선택 후 그보다 뒤쪽으로만 뻗어 나감

        v.push_back(d[i]);

        dfs(i + 1);

        v.pop_back();

    }

}

int main() {

// n개의 데이터에서 뽑기

scanf("%d", &n);

    dfs(0);

}

//중복없고 순서없는 순열 조합 만들기

#include <stdio.h>

#include <vector>

using namespace std;

int n;

int d[] = {0,1,2,3,4,5,6,7,8,9};

int nth=0;  // 몇 번째 호출인지 기록

vector<int> v;

void output() {

    printf("(%2d) ", nth);

    for(int a : v)

        printf("%d-", a);

    printf("\b \n");

}

Φ

0 1 2 3

1

2

3

3

2

3

2

3

3 33

start=0

start=1

start=2

start=3start=2

start=4

start=4 start=4

start=4

start=3

start=3 start=4 start=4

start=4

start=4

1

2

3

4

5

6

7

start=3

8

9

10

11

12

13

14

15

16



DFS 활용 순열 조합 3

▪ 호출순서

• dfs(0) 호출

• start = 0

for(i=0; i<n; i++)

• 노드 d[0] (0) 을 푸시

• dfs(1) 호출

• start = 1

for(i=1; i<n; i++)

• 노드 d[1] (1) 푸시

• dfs(2) 호출

 :

298

int n;

int d[] = {0,1,2,3,4,5,6,7,8,9};

int nth=0;  // 몇 번째 호출인지 기록

void dfs(int start, vector<int> &v) {

    nth++;  // 호출 횟수 증가

output(v);

//start부터 그 이후 원소들로만 뻗어나감을 구현

for (int i = start; i < n; i++) {

        v.push_back(d[i]);

        dfs(i + 1, v);

        v.pop_back();

    }

}

int main() {

    scanf("%d", &n);

    vector<int> v;

    dfs(0);

}

Φ

0 1 2 3

1

2

3

3

2

3

2

3

3 33

dfs(0)

dfs(1)

dfs(2)

dfs(3)dfs(2)

dfs(4)

dfs(4) dfs(4)

dfs(4)

dfs(3)

dfs(3) dfs(4) dfs(4)

dfs(4)

dfs(4)

1

2

3

4

5

6

7

dfs(3)

8

9

10

11

12

13

14

15

16



공평한 배분

▪ 문제

금광 앞에 있는 살고 있는 지겸이와 재경이에

게 금광에서 나온 금을 최대한 공평하게 나누

어 주고자 한다.

금덩이의 개수 n과, 각 금덩이의 무게가 주어

졌을 때, 두 사람이 가장 공평하게 나누어 갖

는 방법을 계산하는 프로그램을 작성하시오.

예를 들어 5g, 1g, 4g, 11g, 8g 이렇게 5개의

금덩이가 주어진다면,

한 사람이 14g (5g+1g+8g), 나머지 한 사람

이 15g(4g+11g)으로 나누었을 때 그 차이가

1g으로 가장 공평하다.

▪ 입력

첫 번째 줄에는 금덩이의 개수가 입력된

다.(1 ≤ n ≤ 20)

두 번째 줄에는 금덩이들의 무게가 공백으

로 구분되어 입력된다.(1 ≤ 금덩이 무게 ≤

1000)

▪ 출력

가장 공평하게 나누었을 때의 차이를 출력한다.

▪ 입력과 출력의 예

299

입력 예 출력 예

5 
5 1 4 11 8

1

DFS3



공평한 배분
▪ 전체 코드

300

void dfs(int start, int sum) {

}

#include <iostream>

#include <vector>

#include <cmath>

#define  MAX_N  20

using namespace std;

int n;

int d[MAX_N];

int tot=0, ans=1e9;

vector<int> v;

void dfs(int start, int sum);

int main() {

    cin >> n;

    for(int i=0; i<n; i++) {

        cin >> d[i];

        tot += d[i];

    }

    dfs(0, 0);

    cout << ans;

}



공평한 배분
▪ 전체 코드

301

void dfs(int d, int sum, vector<int> &v) {

    int diff = abs(sum - (tot-sum));

    //printf("%3d  ", diff);

    //cout << sum << " (";

    //for(int i: v)

    //    cout << i << ", ";

    //cout << ") vs " << (tot-sum) << endl;

    if(diff < ans) {

        ans = diff;

    }

    for(int i=d; i<N; i++) {

        v.push_back(D[i]);

        dfs(i+1, sum+D[i], v);

        v.pop_back();

    }

}

#include <iostream>

#include <vector>

#include <cmath>

using namespace std;

int N;

int D[20];

int tot=0;

int ans=1e9;

void dfs(int d, int sum, vector<int> &v);

int main() {

    cin >> N;

    for(int i=0; i<N; i++) {

        cin >> D[i];

        tot += D[i];

    }

    vector<int> v;

    dfs(0, 0, v);

    cout << ans << endl;

    return 0;

}



리모콘1

▪ 문제

컴퓨터실에서 수업중인 정보 선생님은 냉난방기의

온도를 조절하려고 한다. 냉난방기가 멀리 있어서

리모컨으로 조작하려고 하는데, 리모컨의 온도 조절

버튼은 다음과 같다.

1) 온도를 1도 올리는 버튼

2) 온도를 1도 내리는 버튼

3) 온도를 5도 올리는 버튼

4) 온도를 5도 내리는 버튼

5) 온도를 10도 올리는 버튼

6) 온도를 10도 내리는 버튼

이와 같이 총 6개의 버튼으로 목표 온도에 도달해야

한다. 현재 설정 온도와 변경하고자 하는 목표 온

도가 주어지면 이 버튼들을 이용하여 목표 온도

로 변경하고자 한다. 

이때 버튼 누름의 최소 횟수를 구하시오. 

예를들어 7도에서 34도로 변경하는 경우,

7 → 17 → 27 → 32 → 33 → 34

이렇게 총 5번 누르면 된다.

▪ 입력

현재온도 a와 목표온도 b가 입력된다.

(0 ≤ a, b ≤ 40)

▪ 출력

최소한의 버튼 사용으로 목표 온도가 되는 버튼 누

름의 횟수를 출력한다.

303

입력 예 출력 예

7 34 5

DFS1



리모콘1 (초기설계)

▪ 초기 설계

• 버튼을 누를 때 마다 변화하는 모든 온

도에 대하여 전체 탐색 수행

• 탐색함수 dfs() 는 6갈래로 뻗어 나감

• 재귀호출 해법 가능

• 계산량: 𝑂(6𝑟𝑒𝑠)

304

+10 +5 +1 -1 -5 -10

이
온도
에서
다시
dfs()

이
온도
에서
다시
dfs()

이
온도
에서
다시
dfs()

이
온도
에서
다시
dfs()

이
온도
에서
다시
dfs()

이
온도
에서
다시
dfs()

#define  TEMP_LOW    0

#define  TEMP_HIGH  40

int adj[] = { 10, 5, 1, -10, -5, -1 }; //리모컨 버튼으로 바꿈

void dfs(int cnt, int temp) {  // 현재 온도를 추가로 전달

    // 온도 범위를 넘어서는 경우 탐색 중단

if(temp < TEMP_LOW || temp > TEMP_HIGH) return;

            

    if(temp == target) {

        if(cnt < ans) { // 지금까지 찾아낸 횟수보다 작은 방식이면

ans = cnt;  // 결과에 현재 횟수를 기록

        }

        // 목표 채널에 도달한 뒤에는 더이상 탐색을 진행할 필요 없음

// 왜냐하면 무조건 버튼 조작횟수가 늘어날 것이므로

return;

    }

    

    //매 갈림길에서 똑같이 n개로 갈라짐을 구현

for(int i=0; i<6; i++) { 

        seq.push_back(d[i]); 

        dfs(cnt+1, temp+adj[i]);

        seq.pop_back();

    }

}

10

20 15 11 9 5 0



리모콘1 (초기설계)

305

#include <stdio.h>

#include <math.h>

#include <vector>

#define  TEMP_LOW    0

#define  TEMP_HIGH  40

using namespace std;

int start, target, ans;

int call_cnt=0;

int adj[] = { 10, 5, 1, -10, -5, -1 };

vector<int> v;

void dfs(int cnt, int temp);

void output() {

    for(int x : v)  // 버튼 누른 순서 모두 출력

printf("%3d,", x);

    printf("\b (%d)\n", ans);  // 누른 횟수 출력

}

int main(void)  {

    scanf("%d %d", &start, &target);

    //최초 답: +1 또는 -1 버튼만으로 도달하는 방법

    ans = abs(target-start);

    dfs(0, start);

    printf("dfs() call count: %d\n", call_cnt);

    printf("%d\n", ans);

    return 0;

}

void dfs(int cnt, int temp) {

    call_cnt++;

}



리모콘1 (초기설계)



리모콘1 (개선설계)

▪ 개선 설계

• 현재 온도보다 목표 온도가 큰 경우

• 온도 올리는 버튼 3개 사용

• 현재 온도보다 목표 온도가 작은 경우

• 온도 내리는 버튼 3개 사용

• 탐색 함수 dfs()는 3갈래로 뻗어 나감

• 계산량: 𝑂 3𝑟𝑒𝑠 로 감소
308

+10 +5 +1

이
온도에서
다시 dfs()

이
온도에서
다시 dfs()

이
온도에서
다시 dfs()

void dfs(int cnt, int temp) {

    count++;

    // 지금까지 알아낸 리모컨 최다 조작 횟수를 최대 탐색 깊이로 설정

if(cnt > res) return;

    

    // 온도 범위를 넘어서는 경우 탐색 중단

    if(temp < TEMP_LOW || temp > TEMP_HIGH) return;

    if(temp == target) {

        if(cnt < res) { // 지금까지 찾아낸 횟수보다 작은 방식이면

res = cnt;  // 결과에 현재 횟수를 기록

output();

        }

return;

    }

    for(int i=0; i<6; i++) {

        // 목표 온도가 지금 온도보다 더 높은데, 조정 온도가 0이하이면,

        if(temp < target && adj[i] <= 0)

            continue; // 건너뜀

        // 목표 온도가 지금 온도보다 더 낮은데, 조정 온도가 0이상이면,

        if(temp > target && adj[i] >= 0)

            continue;  // 건너뜀

        v.push_back(adj[i]);

        dfs(cnt+1, temp +ajd[i]);

        v.pop_back();

    }

}

10

20 15 11



리모콘1 (개선설계)



리모콘1

▪ 개선 설계2

• 느린 이유

• 허용되는 최대 횟수까지 버튼 누르는 모

든 가능성을 다 뒤져야 답을 얻게 됨

• 개선책

• 버튼 1번에 해결 가능한가? 아니라면,

• 2번 눌러서 가능한가? 또 아니라면,

• 3번 눌러서 가능한가? 또 아니라면,

    :

• 너비우선 탐색(BFS)의 적용

▪ 너비우선탐색 알고리즘

1) 시작 정점 k를 큐에 삽입

2) 큐가 빌 때까지 다음을 반복 :

① 큐에서 첫 번째 노드를 꺼내어 삭제

② ①에서 꺼낸 노드를 처리

③ ①에서 꺼낸 노드와 이웃하는 모든 노

드를 큐에 삽입

311

+10 +5 +1

10

20 15 11



트리구조의 너비우선탐색(BFS)

▪ 트리 구조 ▪ 큐을 이용한 BFS 순회

• bfs(1)

• bfs(2),bfs(7),bfs(8)

• dfs(3),dfs(6),dfs(9),dfs(12)

• dfs(4),dfs(5),dfs(10),dfs(11)

depth=0

depth=1

depth=2

depth=3

1

2

7

8

1 2

3

7

8

6

7 8 3 6 9 12 4 5 10 11

3

6

9

12

3

8

6

6

9

12

4

5

9

12

4

5

12

4

5

10

11

4

5

10

11

5

10

11

10

11 11



리모콘1 BFS 풀이

313

#include <stdio.h>

#include <queue>

using namespace std;

struct node {

    int cnt;

    int pre_temp;

    int change;

    int cur_temp;

} node;

queue <node> Q;

int adj[] = { 10, 5, 1, -10, -5, -1 };

int ans;

int main(void)  {

    int start, target;

    scanf("%d %d", &start, &target);

    printf("(cnt) pre,chg,cur\n");    

    Q.push({0, 0, 0, start});

    while(! Q.empty()) {

    }

    printf("%d\n", ans);;

    return 0;

}

▪ 너비우선탐색 알고리즘

1) 시작 정점 k를 큐에 삽입

2) 큐가 빌 때까지 다음을 반복 :

① 큐에서 첫 번째 노드를 꺼내어 삭제

② ①에서 꺼낸 노드를 처리

③ ①에서 꺼낸 노드와 이웃하는 모든 노

드를 큐에 삽입

remocon1_bfs_try.cpp

https://gifted.datahub.pe.kr/src/GRAPH/bfs/remocon1_bfs_try.cpp


315

int main(void)  {

int start, target;

scanf("%d %d", &start, &target);

printf("(cnt) pre,chg,cur\n");

Q.push({0, 0, 0, start});

while(! Q.empty()) {

node n = Q.front();  // 큐에서 첫번째 항목 획득

Q.pop();             // 삭제

printf("(%3d) %3d,%3d,%3d\n", 

n.cnt, n.pre_temp, n.change, n.cur_temp);

if(n.cur_temp == target) {

ans = n.cnt;

break;

}

for(int i=0; i<6; i++) {

// 목표 온도가 더 높은데, 조정 온도가 0이하이면,

            if(n.cur_temp < target && adj[i] <= 0)

continue;  // 건너뜀

// 목표 온도가 더 낮은데, 조정 온도가 0이상이면,

            if(n.cur_temp > target && adj[i] >= 0)

continue;  // 건너뜀

Q.push({n.cnt+1, n.cur_temp, 

adj[i], n.cur_temp+adj[i]});

}

}

printf("%d\n", ans);;

return 0;

}

1 8

(cnt) pre,chg,cur

(  0)   0,  0,  1

(  1)   1, 10, 11

(  1)   1,  5,  6

(  1)   1,  1,  2

(  2)  11,-10,  1

(  2)  11, -5,  6

(  2)  11, -1, 10

(  2)   6, 10, 16

(  2)   6,  5, 11

(  2)   6,  1,  7

(  2)   2, 10, 12

(  2)   2,  5,  7

(  2)   2,  1,  3

(  3)   1, 10, 11

(  3)   1,  5,  6

(  3)   1,  1,  2

(  3)   6, 10, 16

(  3)   6,  5, 11

(  3)   6,  1,  7

(  3)  10,-10,  0

(  3)  10, -5,  5

(  3)  10, -1,  9

(  3)  16,-10,  6

(  3)  16, -5, 11

(  3)  16, -1, 15

(  3)  11,-10,  1

(  3)  11, -5,  6

(  3)  11, -1, 10

(  3)   7, 10, 17

(  3)   7,  5, 12

(  3)   7,  1,  8

3

실행결과

▪ 1도 에서 시작

▪ 8도 도달이 목표

▪ 버튼을 한번 누를 때 마다

세 갈래로 갈라짐

▪ 1회차

+10, +5 +1

▪ 2회차

+10 ( -10, -5, -1)

 +5 ( +10, +5, +1)

 +1 ( +10, +5, +1)

▪ 3회차



리모콘2 (채널 빨리 바꾸기)

▪ 문제

스마트 TV 한 대를 구매하였다. 당연히 채널을 조정할

수 있는 리모콘도 함께 들어있었다. 그런데 리모콘의 버

튼이 아래와 같이 총 6개만 존재하였다.

[채널-6], [채널-4], [채널–1], [채널+3], [채널+5], [채널+9]

리모컨의 채널 조정은 존재하는 채널로만 이동 가능한데

TV채널은 1번부터 40번까지만 존재한다. 그래서 만약 1

번 채널에서 [채널-6] 버튼을 누르면 무시될 것이다. 또

한 38번 채널에서 [채널+9] 버튼을 누른다면 무시될 것

이다. 

위와 같은 조건에서 33번 채널에서 40번 채널로 이동하

는 방법으로는,

① [채널+5], [채널-1], [채널+3]

② [채널+3], [채널-1], [채널+5]

③ [채널-1], [채널+5], [채널+3]

④ [채널-1], [채널+3], [채널+5]

⑤ [채널-1], [채널-1], [채널+9]

위 방법들 중 한 가지 방법으로 목표 채널로 이동할 수

있다.

(버튼 조작 중 채널 범위를 넘어서는 [채널+5], [채널

+3], [채널-1] 등의 방법은 안됨)

이왕이면 빠르게 채널을 바꾸는 것이 좋을 것이다.

현재 채널과 목표 채널이 주어졌을 때, 최소 버튼 조작

으로 목표 채널로 이동한다면 몇 번 만에 가능한지, 그

리고 최소 버튼 조작의 방법이 몇 가지 존재하는지 알

아내는 프로그램을 제작하시오. 

316• 출처: 2023 충북정올 학교예선 초등 5번 문제

DFS1



리모콘2 (채널 빨리 바꾸기)

위 예시에서는 33번 채널에서 40번 채널로 최소 3

번의 버튼 조작으로 이동이 가능하며, 3번의 버튼

조작으로 이동하는 방법은 총 5가지 존재한다.

▪ 입력

첫 번재 줄에 공백으로 구분하여 현재 채널(C)과 목

표 채널(T)이 입력된다.

(1 ≤ C ≤ 40,  1 ≤ T ≤ 40)

▪ 출력

첫 번째 줄에 목표 채널로 이동하기 위해 필요한 최

소 버튼 조작 횟수를 자연수로 출력한다.

두 번째 줄에 최소 버튼 조작 횟수로 이동하는 방법

의 가짓수를 자연수로 출력한다.

▪ 입출력의 예

317

입력 예 출력 예

31 39 2
4

33 40 3
5

DFS1



리모콘2

▪ 풀이 아이디어1

• 깊이 우선으로 탐색

• DFS로 구현

• 계산량: 𝑂(6𝑑) , d=최대탐색 깊이

▪ 풀이 아이디어2

• 너비 우선으로 탐색

• BFS로 구현

• 계산량: 𝑂(6𝑟𝑒𝑠) , res=답을 찾았을 때 깊
이

318

33

42 38 36 32 29 27

+9    +5    +3      -1     -4       -6

채널
범위
를

벗어
났으
므로
트리
확장

x

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산

33

42 38 36 32 29 27

+9    +5    +3      -1     -4       -6

온도
범위
를

벗어
났으
므로
트리
확장

x

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산

여섯 
갈래
로

갈라
져서
다시
계산



DFS를 이용한 방법

319

// MAX가 10으로 설정되어 있으므로

// 최대 리모콘 조작횟수 10회까지 탐색한다.

#include <stdio.h>

#include <vector>

#define  CH_LOW    1

#define  CH_HIGH  40

#define  MAX      10     // 최대 탐색 깊이

using namespace std;

int a, b;

int res = MAX;

int methods = 0;  // 몇 가지 방법이 있는가?

int adj[] = { 9, 5, 3, -6, -4, -1 };

int main(void)  {

    scanf("%d %d", &a, &b);

    dfs(0, a);

    printf("%d\n%d\n", res, methods);

    return 0;

}

void dfs(int cnt, int ch) {

    //리모컨 최다 조작 횟수를 최대 탐색 깊이로 설정

if(cnt > MAX)    return;

   // 채널 범위를 넘어가는 경우 서브노드 탐색 중단

    if(ch < CH_LOW || ch > CH_HIGH)  return;

    if(ch == b) {

        if(cnt < res) { // 지금까지 찾아낸 횟수보다 작은 방식이면

res = cnt;  // 결과에 현재 횟수를 기록

methods = 1;  // 새로운 최소조작법을 찾았으므로

        }

        else if(cnt == res)

            methods ++;  // 최소 조작법과 동일 횟수를 찾았으므로

        // 목표 채널에 도달한 뒤에는 더이상 탐색을 진행할 필요 없음

// 왜냐하면 무조건 버튼 조작횟수가 늘어날 것이므로…

return;

    }

    for(int i=0; i<6; i++) {

        dfs(cnt+1, ch+adj[i]);

    }

}



320

// 리모컨의 누른 버튼을 추적하는 변형

#include <stdio.h>

#include <vector>

#define  CH_LOW    1

#define  CH_HIGH  40

#define  MAX      10     // 최대 탐색 깊이

using namespace std;

int a, b;

int res = MAX;

int methods = 0;

int adj[] = { 9, 5, 3, -6, -4, -1 };

vector<int> v;

void dfs(int cnt, int ch);

void output() {

    for(int x : v)  // 버튼 누른 순서 모두 출력

printf("%3d,", x);

    printf("\b (%d)\n", res);  // 누른 횟수 출력

}

int main(void)  {

    scanf("%d %d", &a, &b);

    dfs(0, a);

    printf("%d\n%d\n", res, methods);

    return 0;

}

void dfs(int cnt, int ch) {

    //리모컨 최다 조작 횟수를 최대 탐색 깊이로 설정

if(cnt > MAX)    return;

    // 채널 범위를 넘어가는 경우 서브노드 탐색 중단

    if(ch < CH_LOW || ch > CH_HIGH)  return;

    if(ch == b) {

        if(cnt < res) { // 지금까지 찾아낸 횟수보다 작은 방식이면

res = cnt;  // 결과에 현재 횟수를 기록

methods = 1; // 새로운 최소조작법을 찾았으므로

            output();

        }

        else if(cnt == res) {

            methods++;  // 최소 조작법과 동일 횟수를 찾았으므로

            output();

        }

        // 목표 채널에 도달한 뒤에는 더이상 탐색을 진행할 필요 없음

// 왜냐하면 무조건 버튼 조작횟수가 늘어날 것이므로

return;

    }

    for(int i=0; i<6; i++) {

        v.push_back(adj[i]);

        dfs(cnt+1, ch+adj[i]);

        v.pop_back();

    }

}



BFS를 이용한 방법

321

#include <stdio.h>

#include <vector>

#include <queue>

using namespace std;

#define  CH_LOW    1

#define  CH_HIGH  40

typedef struct node {

    int ch;     // channel

    int cnt;    // count

};

int main(void)  {          // BFS를 이용한 풀이

int adj[] = { 9, 5, 3, -6, -4, -1 };

    int min_cnt = -1;

    int start, target;

    scanf("%d %d", &start, &target);

    queue<node> Q;

    Q.push({start, 0});

while(! Q.empty()) {

    }

    printf("%d\n", min_cnt);

    return 0;

}

?

    while(! Q.empty()) {

        node n = Q.front();

        Q.pop();

        // 채널 범위를 벗어나면 해당 서브노드 탐색 중단

if(n.ch < CH_LOW || n.ch > CH_HIGH)  

            continue;

        if(n.ch == target) {  // 목표 채널에 도달하면

min_cnt = n.cnt;

            break;

        }

        for(int i=0; i<6; i++) {

            Q.push({n.ch+adj[i], n.cnt+1});

        }

    }

    printf("%d\n", min_cnt);

    return 0;

}



322

// 누른 버튼을 추적하는 변형

#include <stdio.h>

#include <vector>

#include <queue>

#define  CH_LOW    1

#define  CH_HIGH  40

#define  INT_MAX  0x7fffffff

using namespace std;

typedef struct {

    int ch;     // channel

    int cnt;    // count

    vector<int> btns;   // button history

} node;

int main(void)  {          // BFS를 이용한 풀이

int adj[] = { 9, 5, 3, -6, -4, -1 };

    int min_cnt = INT_MAX;

    int methods = 0;

    int start, target;

    scanf("%d %d", &start, &target);

    queue<node> Q;

    Q.push({start, 0, vector<int>()});

    while(! Q.empty()) {

        node n = Q.front();

        Q.pop();

// 채널 범위를 벗어나면 해당 서브노드 탐색 중단

if(n.ch < CH_LOW || n.ch > CH_HIGH)

            continue;

        // 지금 계산 중인 조작횟수가 최소 조작횟수를 넘기면 스톱

if(n.cnt > min_cnt)

            break;

        if(n.ch == target) {  // 목표 채널에 도달하면

min_cnt = n.cnt;

            methods++;

           /* printf("[%d]: ", min_cnt);

            for(int x: n.btns)

                printf("%3d, ", x);

            printf("\b \n"); */

        }

        for(int i=0; i<6; i++) {

            vector<int> btns(begin(n.btns), end(n.btns));

            btns.push_back(adj[i]);

            Q.push({n.ch+adj[i], n.cnt+1, btns});

        }

    }

    printf("%d\n", min_cnt);

    printf("%d\n", methods);

    return 0;

}



거스름돈Ⅱ (순한맛)

▪ 문제

N가지 종류의 화폐가 있다. 이 화폐들을 최소한으

로 이용해서 거스름돈 M원을 만들려고 한다. 

이 때 각 화폐는 몇 개라도 사용할 수 있으며, 사용

한 화폐의 구성은 같지만 순서만 다른 것은 같은 경

우로 구분한다.

예를 들어 2원, 3원 단위의 화폐가 있을 때, 15원을

만들기 3원을 5개 사용하는 것이 가장 최소한의 화

폐 개수이다.

※ DFS 탐색으로도 문제를 해결할 수 있도록 낮이도

를 낮춤.

▪ 입력

첫째 줄에 N, M이 주어진다.  

(1 <= N <= 100, 1 <= M <= 10,000)

이후의 N개의 줄에는 각 화폐의 가치가 주어진다. 

화폐의 가치는 10,000보다 작거나 같은 자연수 이

다.

▪ 출력

첫째 줄에 M원을 만들기 위해 필요한 최소 화폐 개

수 출력한다.

불가능할 때는 -1을 출력한다.

323

입력 예 출력 예

2 15
2
3

5

DFS1



거스름돈Ⅱ (DFS + BFS)

324

#include <stdio.h>

#include <vector>

using namespace std;

int N, M, ans=1e9;

int d[100];

vector<int> v;

void dfs(int cnt, int sum);

void output() {

    for(int x : v)  // 버튼 누른 순서 모두 출력

printf("%3d,", x);

    printf("\b (%d)\n", ans);  // 누른 횟수 출력

}

int main(void)  {

    scanf("%d %d", &N, &M);

    for(int i=0; i<N; i++)

        scanf("%d", &d[i]);

    dfs(0, 0);

    if(ans!=1e9) printf("%d\n", ans);

    else         printf("%d\n", -1);

    return 0;

}

void dfs(int cnt, int sum) {

}

struct node {

    int cnt, coin, sum;

};

void bfs() {

    printf("(cnt), coin, sum\n");

}



테이블의 최소 합

▪ 문제

n*n개의 수가 주어진다. (1<=n<=10)

이때 겹치지 않는 각 열과 각 행에서 수를

하나씩 뽑는다.

(즉, 총 n개의 수를 뽑을 것이다, 그리고

각 수는 100 이하의 값이다.)

이 n개의 수의 합을 구할 때 최솟값을 구

하시오.

▪ 입력

첫 줄에 n이 입력된다. 다음 줄부터 n+1

줄까지 n개씩의 정수가 입력된다.

▪ 출력

구한 최소 합을 출력한다.

327

입력 예 출력 예

3
1 5 3
2 4 7
5 3 5

8

DFS2

…

…

…

…
: : :



테이블의 최소 합

▪ 전체탐색 ▪ 처음으로 구한 해 (10)

▪ 두번째로 구한 해 (11)

328

1행

2행

3행



테이블의 최소 합 DFS (기본설계)

329

// row행까지 더한 결과 sum인 상태

void dfs(int row, int sum) {

}

int main() {

    input();

    dfs(0, 0);

    printf("%d\n", min_sol);

    return 0;

}

#include <stdio.h>

#include <vector>

#include <limits.h>

#define MAX_N   10

using namespace std;

int n;

int col_used[MAX_N];

int m[MAX_N][MAX_N];

int min_sol=INT_MAX;

vector<int> v;

void input(void) {

    scanf("%d", &n);

    for(int i=0; i<n; i++)

        for(int j=0; j<n; j++)

            scanf("%d", &m[i][j]);

}

void output() {

    printf("seq: ");

    for(int a : seq)

        printf("%d-", a);

    printf("\b [%d]\n", min_sol);

}

table_minsum_quiz.cpp

https://gifted.datahub.pe.kr/src/GRAPH/dfs/table_minsum_quiz.cpp


테이블의 최소 합

▪ 탐색배제1: 찾은 답보다 좋을 것

• 배제 조건

331

현재까지의 합 > 지금까지의 최소 합

void solve(int row, int sum) {

   //현재까지의 합 > 지금까지의 최소 합

   if(sum>min_sol)

      return;

    if(row==n) {

        if(score<min_sol)

            min_sol = score;

        output_seq();

        printf("[%d]\n", min_sol);

        return;

    }

    for(int c=0; c<n; c++) {

        if(col_check[c]==0) {

            col_check[c]=1;

            seq.push_back(c);

            solve(row+1, score+m[row][c]);

            seq.pop_back();

            col_check[c]=0;

        }

    }

    return;

}

2+3+1+4=10 6+5 (stop)

첫 번째로 찾은 답 n 번째 답 계산 중



테이블의 최소 합

▪ 탐색배제2: 탐욕법으로 사전 스캔

① 1행에서 가장 작은 수를 택하고 다음

행으로 진행한다.

② 다음 행에서 아직까지 선택되지 않은

열 중 가장 작은 수를 택하고 다음 행

으로 진행한다.

③ 아직 마지막 행을 마치지 않았으면 2

단계로 간다.

④ 지금까지 선택한 수들의 합을 처음 해

로 한다.

332

// 탐욕법 사전스캔

int greedy_chk[MAX_N];

void greedy_ans() {

    min_sol=0;

    printf("\nGreedy seq: ");

    for(int r=0; r<n; r++) {  // 모든 행에 대하여

        int min=MAX_INT, k;

        for(int c=0; c<n; c++) {  // 모든 열에 대해

            // 사용한적 없는 열이면서 최소값이면

            if(!greedy_chk[c] && min>m[r][c]) {

                min=m[r][c];

                k=c;

            }

        }

        min_sol+=min;

        greedy_chk[k]=1;

        printf("%d-", k);

    }

    printf("\b [%d]\n", min_sol);

}

4
8 7 6 2 
5 7 9 8 
2 8 9 5 
4 8 6 1



333

#include <stdio.h>

#include <deque>

#include <limits.h>

#define MAX_N   10

using namespace std;

deque<int> seq;

int m[MAX_N][MAX_N];

int col_chk[MAX_N];

int n, min_sol=INT_MAX;

int counter=0;

void input(void) {

    scanf("%d", &n);

    for(int i=0; i<n; i++)

        for(int j=0; j<n; j++)

            scanf("%d", &m[i][j]);

}

void output_seq() {

    printf("seq: ");

    for(int a : seq)

        printf("%d-", a);

    printf("\b ");

}

테이블의 최소 합 – 탐색배제1+2 전체 소스코드

void solve(int row, int score) {

   //현재까지의 합 > 지금까지의 최소 합

   // 아래 주석처리시 전체 탐색으로 작동

if(score>min_sol) return;

    counter++;

    if(row==n) {     // 마지막 행에 도달하면…

        if(score<min_sol)

            min_sol = score;

        output_seq(); // 선택된 열 순서 출력

printf("[%d]\n", min_sol);

        return;

    }

    // row의 행의 모든 컬럼에 대하여

for(int c=0; c<n; c++) {

        if(!col_chk[c]) {

            col_chk[c] = 1;  // c열 사용됨 표시

seq.push_back(c);

            // 다음행 탐색

            solve(row+1, score+m[row][c]);  

seq.pop_back();

            col_chk[c] = 0; // c열 사용됨 해제

}

    }

}

// 탐욕법 사전스캔

int greedy_chk[MAX_N];

void greedy_ans() {

    min_sol=0;

    printf("\nGreedy seq: ");

    for(int r=0; r<n; r++) { // 모든 행에 대하여

int min=MAX_INT, k;

        for(int c=0; c<n; c++) {  // 모든 열에 대해

// 사용한적 없는 열이면서 최소값이면

if(!greedy_chk[c] && min>m[r][c]) {

                min=m[r][c];

                k=c;

            }

        }

        min_sol+=min;

        greedy_chk[k]=1;

        printf("%d-", k);

    }

    printf("\b [%d]\n", min_sol);

}

int main() {

    input();

// 아래 주석처리시 탐색배제1만 적용됨

    greedy_ans(); 

    solve(0, 0);

    printf("min sum: %d\n", min_sol);

    printf("counter: %d\n", counter);

    return 0;

}



테이블의 최소 합 – 탐색배제 성능비교

▪ 성능 비교 테스트 데이터 ▪ 탐색 횟수 비교 결과

▪ 배제된 공간 비율

입력 1 입력 2 입력 3

3
12 76 2
52 77 37
13 67 16

5
93 61 92 56 94
18 32 17 10 64
20 98 85 32 82
 1 45 66 77 78
52 11 94 26 57

7
88 51 24 88 94 50 60
14 55  1 23 12 84 91
26 44 81 97 33 82 30
 3 71 12 99 16 92 48
87  5 14 93 28 92 56
 4 14 92 96 48 41 77
94 32 43 16  1 52 51

알고리즘 입력 1 입력 2 입력 3

전체탐색 16 326 13700

탐색배제1 10 97 486

탐색배제2 10 79 330

알고리즘 입력 1 입력 2 입력 3

탐색배제1 37.5% 70.25% 99.06%

탐색배제2 37.5% 75.77% 99.08%



케이블 재사용

▪ 문제

초고속 인터넷 제공을 위해 각 가정집까지 광케이블을 포설하는 통신업체 KKT는 최근 급

격한 원자재값 상승으로 수익이 급감하고 있었다. 그래서 이를 타개하기 위해 기존에는 그

냥 버렸던 자투리 광케이블을 모두 수거한 뒤 이를 이어 붙여서 재사용하는 방식으로 비용

절감을 하기로 하였다.

자투리 광케이블이 N개 있었다면 각각의 길이는 Li이며 이 중 1개 이상을 선택하여 이를

단독으로 사용하거나 이어 붙여서 길이가 L인 광케이블을 만들어낼 수 있다. 이렇게 재사

용한 광케이블의 길이 L이 공사에 필요한 길이 T이상이 되면 공사에 사용이 가능하다.

필요한 광케이블 길이와 재사용된 광케이블 길이 차이의 최솟값을 구하는 프로그램을 작

성하시오

• 출처: 2024 시도상업경진대회 비즈니스프로그래밍 8번 335

DFS3



케이블 재사용

▪ 입력

(1) 첫 번째 줄에는 자투리 광케이블의 개수 N

이 입력된다.

(2 ≤ N ≤ 22)

(2) 두 번째 줄에는 자투리 광케이블의 길이 Li

가 공백으로 분리되어 N개 입력된다.

(1 ≤ Li ≤ 1000)

(3) 세 번째 공사에 필요한 광케이블의 길이 T

가 입력된다.

(1 ≤ T ≤ 20000)

▪ 출력

필요한 광케이블의 길이 T와 자투리를 이어 붙

여 만든 광케이블의 길이 L과의 차이의 최솟값

을 출력한다.

단, 이어 붙여 만든 광케이블의 길이가 필요한

광케이블의 길이 이상이어야 공사가 가능하다.

▪ 입력과 출력의 예

336

입력 예 출력 예

4 
1 2 3 9 
5

0



케이블 재사용
▪ 전체 코드

337

void output_combi(vector<int>& v, int len) {

    for(int a : v)

        printf("%d-", a);

    printf("\b [%d]\n", len);

}

void dfs(int start, int cur_len, vector<int> &v) {

    output_combi(v, cur_len);

    // 현재 길이가 T 이상이면 최소 차이 갱신

if (______________) {

        if (cur_len - T < min_diff) {

            min_diff = __________;

        }

        printf("stop! length over\n");

        return;

    }

    // 모든 자투리 광케이블을 탐색

for (int i = ______; i < _____; i++) {

        v.push_back(L[i]);

        dfs(i + 1, ____________, v);

        v.pop_back();

    }

}

#include <stdio.h>

#include <limits.h>

#include <vector>

using namespace std;

int N, T;

int L[22];

int min_diff = INT_MAX;

void dfs(int, int, vector<int> &);

int main() {

    scanf("%d", &N);

    for (int i = 0; i < N; i++) {

        scanf("%d", &L[i]);

    }

    scanf("%d", &T);

    // DFS 탐색 시작

    vector<int> v;

dfs(0, 0, v);

    printf("%d\n", min_diff);

    return 0;

}

cable_reuse_quiz.cpp

https://gifted.datahub.pe.kr/src/GRAPH/dfs/cable_reuse_quiz.cpp


비선형구조의 자료의 표현

▪ 그래프의 자료 구현

• 인접리스트

(adjacency list)

• 인접행렬

(adjacency matrix)

• 기타방법 …

341



깊이우선탐색(DFS)

▪ 그래프의 순회

트리와 달리 그래프는 사이클이 존재함

방문정보를 유지하여 재방문을 막아야

함

▪ 깊이우선탐색 알고리즘

: go deep(before going wide)

def dfs(k):

1) 정점 k를 처리하고 방문한 것으

로 표시

2) 정점 k와 연결된 모든 정점에 대

하여 방문한적이 없으면 그 정점

에서 dfs, 완료되면 되돌아오기

(백트랙)

342
image source: https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/bfs.html



깊이우선탐색(DFS)

▪ 탐색순서
①

②

image source: https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/bfs.html



깊이우선탐색(DFS)

▪ 탐색순서

image source: https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/bfs.html



깊이우선탐색(DFS)

▪ 탐색순서

image source: https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/bfs.html



깊이우선탐색(DFS)

▪ vector를 인접리스트로 활용
int n, m;

vector<vector<int>> G;

vector<bool> visited;

void input_G() {

   scanf("%d %d", &n, &m);

   // 정점이 0부터 시작하므로 n+1

   G.resize(n+1); // 공간확보 

   visited.assign(n+1, 0);

   for(int i=0; i<m; i++) {

      int a, b;

      scanf("%d %d", &a, &b);

      // 양방향 연결이므로 a→b, a←b

      G[a].push_back(b);

      G[b].push_back(a);

   }

}

int main() {

   input_G();

}

그래프 데이터

8 10
0 1
0 3
0 8
1 7
2 3
2 5
3 4
2 7
4 8
5 6

346



깊이우선탐색(DFS)

▪ DFS 알고리즘 구현(인접리스트)

• DFS 알고리즘

def dfs(k):

1) 정점 k를 처리하고 방문한 것으로 표시

2) 정점 k와 연결된 모든 정점에 대하여 

방문한 적이 없으면 그 정점에서 dfs, 

dfs 완료되면 되돌아오기(백트랙)

int n, m;

vector<vector<int>> G;

vector<bool> visited;

// 정점 k에서 dfs

void dfs(int k) {

  // 정점 k를 방문하였음을 출력

printf("dfs(%d) started.\n", k);

  // 나중에 다시오지 않기 위해 방문을 표시하고,

  visited[k] = true;

  // 정점 k와 연결된 모든 정점에 대하여

for (int i=0; i<G[k].size(); i++) {

    // k와 연결된 i번째 정점에 방문한 적 없으면,

    if (!visited[G[k][i]]) {

      // 그 정점에서 다시 dfs 시작

dfs(G[k][i]);

      // dfs 완료하고 돌아왔다고 메시지 출력

printf("return to dfs(%d).\n", k);

    }

    else

      printf("(%d) already visited.\n", G[k][i]);

  }

  return; //연결된 모든 정점을 방문완료하여 되돌아가기

}

347

?

?

?

dfs함수가 종료되면
호출 위치로 알아서
되돌아오므로 딱히
백트랙을 구현할

필요는 없음.



// 정점 k에서 dfs

void dfs(int k) {

  // 정점 k를 방문하였음을 출력

printf("dfs(%d) started.\n", k);

  // 나중에 다시오지 않기 위해 방문을 표시하고,

  ____________;

  // 정점 k와 연결된 모든 정점에 대하여

for (int i=0; i<__________; i++) {

    // 정점k의 i번째 정점에 방문한 적이 없으면,
    if (___________) {

      // 그 정점에서 다시 dfs 시작

      ____________;

      // dfs 완료하고 돌아왔다고 메시지 출력

printf("return to dfs(%d).\n", k);

    }

    else

       printf("(%d) already visited.\n", G[k][i]);

  }

  return;

}

int main() {

  input_G();

  output_G();

  dfs(0);

} 348

#include <stdio.h>

#include <vector>

using namespace std;

int n, m;

vector<vector<int>> G;

vector<bool> visited;

void input_G() {

  scanf("%d %d", &n, &m);

  G.resize(n+1);  // 정점이 0부터 시작하므로 n+1

  visited.assign(n+1, 0);

  for(int i=0; i<m; i++) {

    int a, b;

    scanf("%d %d", &a, &b);

    G[a].push_back(b);

    G[b].push_back(a);

  }

}

void output_G() {

  printf("\n idx  [0][1][2]\n");

  for(int a=0; a<G.size(); a++) {

    printf("G[%d]:", a);

    for(int i : G[a])

      printf("%3d", i);

    printf("\n");

  }

  printf("\n");

}

깊이우선탐색(DFS) 전체 소스코드

// 정점 k에서 dfs

void dfs(int k) {

 // 정점 k를 방문하였음을 출력

printf("dfs(%d) started.\n", k);

  // 나중에 다시오지 않기 위해 방문을 표시하고,

  visited[k] = true;

  // 정점 k와 연결된 모든 정점에 대하여,

for (int i=0; i<G[k].size(); i++) {

    // 정점k의 i번째 정점에 방문한 적이 없으면,

    if (!visited[G[k][i]]) {

      // 그 정점에서 다시 dfs 시작

dfs(G[k][i]);

      // dfs 완료하고 돌아왔다고 메시지 출력

printf("return to dfs(%d).\n", k);

    }

    else

      printf("(%d) already visited.\n", G[k][i]);

  }

  return;

}

int main() {

  input_G();

  output_G();

  dfs(0);

}

dfs_basic_src_quiz.cpp

https://gifted.datahub.pe.kr/src/GRAPH/dfs/dfs_basic_src_quiz.cpp


// 정점 k에서 dfs

void dfs(int k) {

 // 정점 k를 방문하였음을 출력

printf("dfs(%d) started.\n", k);

  // 나중에 다시오지 않기 위해 방문을 표시하고,

  visited[k] = true;

  // 정점 k와 연결된 모든 정점에 대하여,

for (int i=0; i<G[k].size(); i++) {

    // 정점k의 i번째 정점에 방문한 적이 없으면,

    if (!visited[G[k][i]]) {

      // 그 정점에서 다시 dfs 시작

dfs(G[k][i]);

      // dfs 완료하고 돌아왔다고 메시지 출력

printf("return to dfs(%d).\n", k);

    }

    else

      printf("(%d) already visited.\n", G[k][i]);

  }

  return;

}

int main() {

  input_G();

  output_G();

  dfs(0);

} 349

#include <stdio.h>

#include <vector>

using namespace std;

int n, m;

vector<vector<int>> G;

vector<bool> visited;

void input_G() {

  scanf("%d %d", &n, &m);

  G.resize(n+1);  // 정점이 0부터 시작하므로 n+1

  visited.assign(n+1, 0);

  for(int i=0; i<m; i++) {

    int a, b;

    scanf("%d %d", &a, &b);

    G[a].push_back(b);

    G[b].push_back(a);

  }

}

void output_G() {

  printf("\n idx  [0][1][2]\n");

  for(int a=0; a<G.size(); a++) {

    printf("G[%d]:", a);

    for(int i : G[a])

      printf("%3d", i);

    printf("\n");

  }

  printf("\n");

}

깊이우선탐색(DFS) 전체 소스코드 dfs_basic_src_full.cpp

https://gifted.datahub.pe.kr/src/GRAPH/dfs/dfs_basic_src_full.cpp


너비우선탐색(BFS)

▪ 너비우선탐색 알고리즘

: Breadth First Search

1. 정점 k를 큐에 삽입하고 k를 방문한

것으로 표시

2. 큐가 빌 때까지 다음을 반복:

1) 큐에서 첫 번째 항목 삭제와 처리

2) 삭제된 정점과 이웃하는 모든 정점에

대하여 방문하지 않은 정점이라면,

① 그 정점을 큐에 삽입

② 그 정점에 방문을 표시

▪ 너비 우선의 의미

350
image source: https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/bfs.html



너비우선탐색(BFS)

▪ 탐색순서
①

②

처리: 0

처리: 0 1 3 8

처리: 0 1 3 8 7

처리: 0 1 3 8 7 2 4

image source: https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/bfs.html

0

1

1 3 8

0

3 8 7

3 8 7 2 4

8 7 2 4

1.정점 k를  처리하고 큐에 삽입 , k를
방문한 것으로 표시

2.큐가 빌 때까지 다음을 반복:
1) 큐에서 첫 번째 항목 삭제
2) 삭제된 항목과 이웃하는 모든 정점에

대하여 방문하지 않은 정점이라면,
① 그 정점을 처리하고 큐에 삽입
② 그 정점에 방문을 표시



너비우선탐색(BFS)

▪ 탐색순서

image source: https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/bfs.html

①

②

처리: 0 1 3 8 7 2 4 5 처리: 0 1 3 8 7 4 2 5 6

7 2 4

2 4 5

4 5

5 6

6



너비우선탐색(BFS)

▪ 너비우선탐색 알고리즘

: Breadth First Search

1. 정점 k를 처리하고 큐에 삽입, k를

방문한 것으로 표시

2. 큐가 빌 때까지 다음을 반복:

1) 큐에서 첫 번째 항목 삭제

2) 삭제된 항목과 이웃하는 모든 정점에

대하여 방문하지 않은 정점이라면,

① 그 정점을 처리하고 큐에 삽입

② 그 정점에 방문을 표시

int n, m;

vector<vector<int>> G;

vector<bool> visited;

// 정점 k에서 bfs 시작

void bfs(int k) {

  queue<int> Q;   // 방금 방문한 이웃의 정점을 넣어 놓는 큐

printf("bfs: (%d)\n", k);              

  Q.push(k);        // 시작 정점을 Q에 삽입

visited[k]=1;     // 시작 정점 방문했다고 표시

while(!Q.empty()) {    // 큐에 내용물 있으면 계속반복    

    int cur=Q.front();   // 큐의 첫번째 원소

Q.pop();             // 빼냄(삭제)

    printf("%d deleted.\nbfs: ", cur);

    // 방금 전에 삭제한 정점과 이웃하는 모든 정점에 대하여

for(int i=0; i<G[cur].size(); i++) {

      // 방문한 적이 없으면

if(!visited[G[cur][i]]) {

        printf("(%d) ", G[cur][i]);

        Q.push(G[cur][i]);

        visited[G[cur][i]]=1;

      }

    }

    printf("\n");

  }

} 353

?

?

?

?



354

#include <iostream>

#include <vector>

#include <queue>

using namespace std;

int n, m;

vector<vector<int>> G;

vector<bool> visited;

// 현재 큐의 모습을 출력

void output_Q(queue<int> Q) {  

  printf("Q:[");

  while(!Q.empty()) {

    int cur=Q.front();

    printf("%3d", cur);

    Q.pop();

  }

  printf("], ");

}

너비우선탐색(BFS) 전체 소스코드

void output_G() {

  printf("\n");

  for(int a=0; a<=n; a++) {

    printf("%2d:", a);

    for(int i : G[a])

      printf("%3d", i);

    printf("\n");

  }

  printf("\n");

}

void input_G() {

  scanf("%d %d", &n, &m);

  // 정점이 0부터 시작하므로 n+1

  G.resize(n+1); 

  visited.assign(n+1, 0);

  for(int i=0; i<m; i++) {

    int a, b;

    scanf("%d %d", &a, &b);

    G[a].push_back(b);

    G[b].push_back(a);

  }

}

int main() {

  input_G();

  output_G();

  bfs(0);

}

// 정점 k에서 bfs

void bfs(int k) {

  queue<int> Q;     

  Q.push(k);        // 시작 정점을 Q에 삽입

visited[k]=1;     // 시작 정점 방문했다고 표시

while(!Q.empty()) {    

output_Q(Q);

    

    int cur=_____();       // 큐의 첫번째 원소

Q.____();              // 빼냄(삭제)

    printf("bfs:(%d) and deleted\n", cur);

    // 삭제한 정점과 이웃하는 모든 정점에 대하여

for(int i=0; i<_____________; i++) {

      // 방문한 적이 없으면

if(!visited[___________]) {

        Q.push(_________);

        visited[_________]=1;

      }

    }

  }

}

1. 정점 k를 처리하고 큐에 삽입, k를

방문한 것으로 표시

2. 큐가 빌 때까지 다음을 반복:

1) 큐에서 첫 번째 항목 삭제

2) 삭제된 항목과 이웃하는 모든

정점에 대하여 방문하지 않은

정점이라면,

① 그 정점을 처리하고 큐에

삽입

② 그 정점에 방문을 표시

// 정점 k에서 bfs

void bfs(int k) {

  queue<int> Q;     

  Q.push(k);        // 시작 정점을 Q에 삽입

visited[k]=1;     // 시작 정점 방문했다고 표시

while(!Q.empty()) {    

output_Q(Q);

    

    int cur=Q.front();    // 큐의 첫번째 원소

Q.pop();              // 빼냄(삭제)

    printf("bfs:(%d) and deleted\n", cur);

    // 삭제한 정점과 이웃하는 모든 정점에 대하여

for(int i=0; i<G[cur].size(); i++) {

      // 방문한 적이 없으면

if(!visited[G[cur][i]]) {

        Q.push(G[cur][i]);

        visited[G[cur][i]]=1;

      }

    }

    printf("\n");

  }

}

bfs_basic_src_quiz.cpp

https://gifted.datahub.pe.kr/src/GRAPH/bfs/bfs_basic_src_quiz.cpp


355

#include <iostream>

#include <vector>

#include <queue>

using namespace std;

int n, m;

vector<vector<int>> G;

vector<bool> visited;

// 현재 큐의 모습을 출력

void output_Q(queue<int> Q) {  

  printf("Q:[");

  while(!Q.empty()) {

    int cur=Q.front();

    printf("%3d", cur);

    Q.pop();

  }

  printf("], ");

}

너비우선탐색(BFS) 전체 소스코드

void output_G() {

  printf("\n");

  for(int a=0; a<=n; a++) {

    printf("%2d:", a);

    for(int i : G[a])

      printf("%3d", i);

    printf("\n");

  }

  printf("\n");

}

void input_G() {

  scanf("%d %d", &n, &m);

  // 정점이 0부터 시작하므로 n+1

  G.resize(n+1); 

  visited.assign(n+1, 0);

  for(int i=0; i<m; i++) {

    int a, b;

    scanf("%d %d", &a, &b);

    G[a].push_back(b);

    G[b].push_back(a);

  }

}

int main() {

  input_G();

  output_G();

  bfs(0);

}

// 정점 k에서 bfs

void bfs(int k) {

  queue<int> Q;

 

  Q.push(k);        // 시작 정점을 Q에 삽입

visited[k]=1;     // 시작 정점 방문했다고 표시

while(!Q.empty()) {

    output_Q(Q);

 

    int cur=Q.front();    // 큐의 첫번째 원소

Q.pop();              // 빼냄(삭제)

    printf("bfs:(%d) and deleted\n", cur);

 

    // 삭제한 정점과 이웃하는 모든 정점에 대하여

for(int i=0; i<G[cur].size(); i++) {

      // 방문한 적이 없으면

if(!visited[G[cur][i]]) {

        Q.push(G[cur][i]);

        visited[G[cur][i]]=1;

      }

    }

  }

}

1. 정점 k를 처리하고 큐에 삽입, k를

방문한 것으로 표시

2. 큐가 빌 때까지 다음을 반복:

1) 큐에서 첫 번째 항목 삭제

2) 삭제된 항목과 이웃하는 모든

정점에 대하여 방문하지 않은

정점이라면,

① 그 정점을 처리하고 큐에

삽입

② 그 정점에 방문을 표시

bfs_basic_src_full.cpp

https://gifted.datahub.pe.kr/src/GRAPH/bfs/bfs_basic_src_full.cpp


미로 탈출 (BFS vs DFS)

356

https://seanperfecto.github.io/BFS-DFS-Pathfinder/

https://seanperfecto.github.io/BFS-DFS-Pathfinder/
https://seanperfecto.github.io/BFS-DFS-Pathfinder/
https://seanperfecto.github.io/BFS-DFS-Pathfinder/
https://seanperfecto.github.io/BFS-DFS-Pathfinder/
https://seanperfecto.github.io/BFS-DFS-Pathfinder/


미로 탈출

▪ 문제

정진이는 벽과 길로 만들어진 N행 M열(세로 N

칸, 가로 M칸) 크기의 미로에 갇혀 있다. 

미로에서는 한 번에 한 칸씩만 이동할 수 있

다. 벽은 0으로, 길은 0아닌 수로 표시된다. 

정진이가 미로에서 탈출하기 위해 이동하여야

하는 최소 칸수를 구하시오. 시작 칸과 마지

막 칸도 이동거리에 포함시킨다.

▪ 입력

첫 번째 줄에 두 정수 N, M이 주어진다. 

(4 ≤ N, M ≤ 200)

다음 N개의 줄에는 각각 M개의 정수로 미로

의 정보가 주어진다. 숫자는 각각 다음을

의미한다.

(0: 벽, 1: 길, 8: 시작위치, 9: 도착위치)

▪ 출력

첫 번째 줄에 최소 이동 칸의 개수를 출력

한다.

357

입력 예 출력 예

7 8
1 0 1 0 0 0 0 1
1 0 1 0 0 1 1 1
1 1 8 1 1 1 0 1
0 1 0 1 0 0 0 1
1 1 0 1 0 1 1 1
1 0 0 1 0 1 0 9
0 0 0 1 1 1 0 1

11



미로 탈출

▪ 지도 데이터 ▪ 그래프로 해석

• 지도데이터를 그래프로보고 탐색기법 적용

358

7  8

1  0  1  0  0  0  0  1

1  0  1  0  0  1  1  1

1  1  8  1  1  1  0  1

0  1  0  1  0  0  0  1

1  1  0  1  0  1  1  1

1  0  0  1  0  1  0  9

0  0  0  1  1  1  0  1

1

1

1

0

1

1

0

0 1 0 0 0 0 1

8 1 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 0 1 0

0 1 1 1 0

1 0 0 1 1

1

1

1

0

0

0

1

1

1

9

1

1



미로 탈출 (초기설계)

359

void input() {

   // (n행 m열)

   scanf("%d %d", &n, &m); 

   // 2차원 리스트의 맵 정보 입력 받기

for(int a=0; a<n; a++) {

       for(int b=0; b<m; b++) {

          int c;

          scanf("%d", &c); 

if(c==8) // 출발지 설정

             Sa=a, Sb=b;    

else if(c==9) // 목적지 설정

             Ga=a, Gb=b; 

          // 모든 길을 -1로 변경

          // a행 b열에 삽입

if(c>=1) 

             M[a][b]=-1; 

          else 

             M[a][b]=0; 

      }

   }

}

#include <stdio.h>

#include <limits.h>

#include <algorithm>

#include <queue>

using namespace std;

typedef struct {

    int a, b;    // a행 b열

} vertex;

int n, m;        // n행 m열

int M[201][201]; // 지도 정보

int Sa, Sb;  //출발지 a행 b열

int Ga, Gb;  //목적지 a행 b열

// 이동할 네 가지 방향 정의, 아래와 같이 적으면

// 아래, 오른쪽, 위쪽, 왼쪽 순서로 탐색하게 됨.

int da[] = {1, 0,-1, 0}; // 행(세로) 방향

int db[] = {0, 1, 0,-1}; // 열(가로) 방향

bool safe(int a, int b) {  // a행 b열

return (0<=a && a<n) && (0<=b && b<m);

}

// 현재 맵에서 탐색 상태를 출력

void output(const char* title, int dist) {

 // 제목출력

    printf("\n[%s] (%d)\n", title, dist);

    for(int a = 0; a < n; a++) {

        for(int b = 0; b < m; b++) {

            printf("%3d", M[a][b]);

        }

        printf("\n");

    }

}

void dfs(int a, int b, int d) {

}

int main(void) {

    input();

    output("initial state",-1);

    // dfs 또는 bfs 하나의 함수만 호출할 것!

dfs(Sa, Sb, 1);  // Sa행 Sb열에서 DFS시작    

//bfs(Sa, Sb, 1);  //Sa행 Sb열에서 BFS시작

    output("last state", -1);

    return 0;

}

maze_initial.cpp

https://gifted.datahub.pe.kr/src/gifted/maze/dfs/1.%20maze_initial.cpp
https://gifted.datahub.pe.kr/src/gifted/maze/dfs/1.%20maze_initial.cpp


미로 탈출 - DFS로 구현

▪ DFS 알고리즘

def dfs(k):

1)정점 k를 처리하고 방문한 것으로 표시

2)k와 연결된 모든 정점에 대하여

방문한적이 없으면 그 정점에서 dfs,

  방문이 완료되면 되돌아 오기

▪ 초기맵 상태

▪ DFS 구현

360

// a행, b열에서 dfs, 현재까지 계산한 거리는 d

void dfs(int a, int b, int d) {

    M[a][b] = d;  //① a행 b열에 거리 기록

    //② 방문한 것으로 표시 이거 안해도 됨?

    //④ 목적지에 도착하면 맵상태와 도달거리 출력

    if(a==Ga && b==Gb) {

        output("DFS success", d);

        return;

    }

    //③ 4방향으로 dfs 

    // da, db배열을 이용하여 for문으로 간략화 가능

if(safe(a+1, b) && M[a+1][b]==-1) // ↓

        dfs(a+1, b, d+1); 

    if(safe(a, b+1) && M[a][b+1]==-1) // →

        dfs(a, b+1, d+1); 

    if(safe(a-1, b) && M[a-1][b]==-1) // ↑

        dfs(a-1, b, d+1); 

    if(safe(a, b-1) && M[a][b-1]==-1) // ←

        dfs(a, b-1, d+1); 

}

-1  0 -1  0  0  0  0 -1

-1  0 -1  0  0 -1 -1 -1 

-1 -1 -1 -1 -1 -1  0 -1

 0 -1  0 -1  0  0  0 -1

-1 -1  0 -1  0 -1 -1 -1

-1  0  0 -1  0 -1  0 -1

 0  0  0 -1 -1 -1  0 -1

?

?

?

Sa, Sb = (2, 2)
Ga, Gb = (5, 7)

0  1  2  3  4  5  6  7

0

1

2

3

4

5

6



미로 탈출 - DFS로 구현

▪ 방향 탐색 간략화 이전 버전 ▪ 방향 탐색 배열이용 업데이트

361

// a행, b열에서 dfs, 현재까지 계산한 거리는 d

void dfs(int a, int b, int d) {

    M[a][b] = d;  //① a행 b열에 거리 기록

    //② 방문한 것으로 표시 이거 안해도 됨?

    //④ 목적지에 도착하면 맵상태와 도달거리 출력

    if(a==Ga && b==Gb) {

        output("DFS success", d);

        return;

    }

    //③ 4방향으로 dfs 

    // da, db배열을 이용하여 for문으로 간략화 가능

if(safe(a+1, b) && M[a+1][b]==-1) // ↓

        dfs(a+1, b, d+1); 

    if(safe(a, b+1) && M[a][b+1]==-1) // →

        dfs(a, b+1, d+1); 

    if(safe(a-1, b) && M[a-1][b]==-1) // ↑

        dfs(a-1, b, d+1); 

    if(safe(a, b-1) && M[a][b-1]==-1) // ←

        dfs(a, b-1, d+1); 

}

// 이동할 네 가지 방향 정의, 아래와 같이 적으면

// 아래, 오른쪽, 위쪽, 왼쪽 순서로 탐색하게 됨.

int da[] = {1, 0,-1, 0}; // 행(세로) 방향

int db[] = {0, 1, 0,-1}; // 열(가로) 방향

// a행, b열에서 dfs, 현재까지 계산한 거리는 d

void dfs(int a, int b, int d) {

    M[a][b] = d;  

    if(a==Ga && b==Gb) {

        output("DFS success", d);

        return;

    }

    //③ 4방향으로 dfs 

   for(int i=0; i<4; i++) {

int na = a+da[i], nb = b+db[i];    

if(safe(na, nb) && M[na][nb]==-1) {

dfs(na, nb, d+1);

}

}

}



미로 탈출 - DFS로 구현

▪ 결과 고찰

• 엥? 최적해가 아닌데…

• 왜 최적해를 못 찾지?

• 원래 전체탐색이 진행되어야 하는데…

▪ DFS 구현

362

// a행, b열에서 dfs, 현재까지 계산한 거리는 d

void dfs(int a, int b, int d) {

    M[a][b] = d;  //① a행 b열에 거리 기록

    //② 방문한 것으로 표시 이거 안해도 됨?

    //④ 목적지에 도착하면 맵상태와 도달거리 출력

    if(a==Ga && b==Gb) {

        output("DFS success", d);

        return;

    }

    //③ 4방향으로 dfs 

   for(int i=0; i<4; i++) {

int na = a+da[i], nb = b+db[i];    

if(safe(na, nb) && M[na][nb]==-1) {

dfs(na, nb, d+1);

}

}

}



미로 탈출 - DFS로 구현

▪ DFS 구현 업데이트 ▪ 결과 확인

363

// 최소거리(최적해)를 저장하기 위한 변수 셋팅

int min_dist=INT_MAX;

// a행, b열에서 dfs, 현재까지 계산한 거리는 d

void dfs(int a, int b, int d) {

    M[a][b] = d;  

    if(a==Ga && b==Gb) {

        // 더 짧은 방법을 찾으면 최소거리 업데이트

        if(min_dist > d) 

            min_dist = d;

        output("DFS success", d);

        return;

    }

    //③ 4방향으로 dfs 방법 업데이트, 백트랙시 길 복원 

    for(int i=0; i<4; i++) {

        int na = a+da[i], nb = b+db[i];    

        if(safe(na, nb) && M[na][nb]==-1) {

            dfs(na, nb, d+1);

            M[na][nb]=-1;  // 백트랙할 경우 길복원

}

    }

}

?

?

?



미로 탈출 – DFS 최종 구현

364

int min_dist=INT_MAX;

// a행, b열에서 dfs, 현재까지 계산한 거리는 d

void dfs(int a, int b, int d) {

    M[a][b] = d;

    // 목적지에 도달하면,

    if(a==Ga && b==Gb) {

        if(min_dist > d)

            min_dist=d;

        output("DFS search success", d);

        return;

    }

    int noway=0;  // 현재 위치에서 이동 불가능 방향 개수

for(int i=0; i<4; i++) {

        int na = a+da[i];

        int nb = b+db[i];

        if(safe(na, nb) && M[na][nb]==-1) {

            dfs(na, nb, d+1);

            M[na][nb]=-1;  // 백트랙할 경우 길복원

}

        else

            noway++; // 이동불가 카운터 증가

if(noway==4) // 4방향 모두 길이 막혀있으면,

            output("DFS search fail", -1);

    }

}



미로 탈출 - BFS로 구현

▪ BFS 알고리즘

1.정점 k를 큐에 삽입하고, k를 방문

한 것으로 표시

2.큐가 빌 때까지 다음을 반복:

1) 큐에서 첫 번째 항목 삭제와 처리

2) 삭제된 정점과 이웃하는 모든 정점에 대하

여 방문하지 않은 정점이라면,

① 그 정점을 큐에 삽입

② 그 정점에 방문을 표시

▪ 초기 맵 상태

365

// bfs(시작행sa, 시작열sb, 거리dist)

void bfs(int sa, int sb, int dist) {

    queue<vertex> q;

    q.push({sa, sb, dist});  // 큐에 현재 시작 삽입

while(!q.empty()) {  // 큐가 빌 때까지 반복

vertex v = q.front(); // 큐의 첫 번째 항목 꺼내기

        q.pop();   // 큐에서 첫 번째 항목 삭제

M[v.a][v.b]=v.d; // 거리 표시

// 목적지에 도달하면 성공 출력하고 탈출

if(v.a==Ga && v.b==Gb) {

            output("BFS search success", v.d);

            min_dist = v.d; // 답 저장

return;

        }

        for(int i=0; i<4; i++) {

            int na=v.a+da[i];

            int nb=v.b+db[i];

            if(safe(na, nb) && M[na][nb]==-1) {

                q.push({na, nb, v.d+1});  // 다음 위치를 큐에 삽입

M[na][nb]=-1;  // 방문했음 표시(벽으로 간주)

            }

        }

    }

    output("BFS search fail", -1); // 여기까지 오면 탐색 실패임

}

?

?

?

?

?

-1  0 -1  0  0  0  0 -1

-1  0 -1  0  0 -1 -1 -1 

-1 -1 -1 -1 -1 -1  0 -1

 0 -1  0 -1  0  0  0 -1

-1 -1  0 -1  0 -1 -1 -1

-1  0  0 -1  0 -1  0 -1

 0  0  0 -1 -1 -1  0 -1

Sa, Sb = (2, 2)
Ga, Gb = (5, 7)

0  1  2  3  4  5  6  7

0

1

2

3

4

5

6



미로 탈출 - BFS로 구현

▪ 결과 확인

366

// bfs(시작행sa, 시작열sb, 거리dist)

void bfs(int sa, int sb, int dist) {

    queue<vertex> q;

    q.push({sa, sb, dist});  // 큐에 현재 시작 삽입

while(!q.empty()) {    // 큐가 빌 때까지 반복

vertex v = q.front(); // 큐의 첫 번째 항목 꺼내기

        q.pop();         // 큐에서 첫 번째 항목 삭제

M[v.a][v.b]=v.d;  // 거리 표시

// 목적지에 도달하면 성공 출력하고 탈출

if(v.a==Ga && v.b==Gb) {

            output("BFS search success", v.d);

            min_dist = v.d; // 답 저장

return;

        }

        for(int i=0; i<4; i++) {

            int na=v.a+da[i];

            int nb=v.b+db[i];

            if(safe(na, nb) && M[na][nb]==-1) {

                q.push({na, nb, v.d+1});  // 다음 정점를 큐에 삽입

M[na][nb]=-1;  // 방문했음 표시(벽으로 간주)

            }

        }

    }

    output("BFS search fail", -1); // 여기까지 오면 탐색 실패임

}

2. maze_bfs_func.cpp

https://gifted.datahub.pe.kr/src/gifted/maze/bfs/2.%20maze_bfs_func.cpp


미로 탈출 - BFS로 구현

▪ 탐색 과정을 보여주는 업데이트

367

// bfs(시작행sa, 시작열sb, 거리dist)

void bfs(int sa, int sb, int dist) {

    queue<vertex> q;

    q.push({sa, sb, dist});  // 큐에 현재 시작 삽입

while(!q.empty()) {  // 큐가 빌 때까지 반복

vertex v = q.front(); // 큐의 첫 번째 항목 꺼내기

        q.pop();   // 큐에서 첫 번째 항목 삭제

        if(v.d>dist)  // 거리가 늘어나면

            output("BFS searched new distance");

        M[v.a][v.b]=dist=v.d; // 거리 표시

// 목적지에 도달하면 성공 출력하고 탈출

if(v.a==Ga && v.b==Gb) {

            output("BFS search success", v.d);

            min_dist = v.d; // 답 저장

return;

        }

3. maze_bfs_show_process.cpp

https://gifted.datahub.pe.kr/src/gifted/maze/bfs/3.%20maze_bfs_show_process.cpp


368

//written by akapo@naver.com

#include <stdio.h>

#include <limits.h>

#include <algorithm>

#include <queue>

using namespace std;

struct vertex {

    int a, b, d; // a행, b열, 거리d

};

int n, m;

int M[201][201]; // 지도 정보

int Sa, Sb;  //출발지 a행 b열

int Ga, Gb;  //목적지 a행 b열

// 이동할 네 가지 방향 정의, 아래와 같이 적으면

// 아래, 오른쪽, 위쪽, 왼쪽 순서로 탐색하게 됨.

int da[] = {1, 0,-1, 0}; // 행 방향

int db[] = {0, 1, 0,-1}; // 열 방향

int min_dist=INT_MAX;

bool safe(int a, int b) {  // a행 b열

return (0<=a && a<n) && (0<=b && b<m);

}

void input() {

    // N, M을 공백을 기준으로 구분하여 입력 받기(n행 m열)

    scanf("%d %d", &n, &m);

    // 2차원 리스트의 맵 정보 입력 받기

for(int a=0; a<n; a++) {

        for(int b=0; b<m; b++) {

            int c;

            scanf("%d", &c); 

if(c==8) Sa=a, Sb=b;    // 출발지 설정

else if(c==9) Ga=a, Gb=b; // 목적지 설정

            // 출발지 목적지 포함 모든 길을 -1로 변경함

if(c>=1) M[a][b]=-1;

            else M[a][b]=0; // a행 b열에 삽입

        }

    }

}

미로 탈출 DFS + BFS 전체 소스코드
// 현재 맵에서 탐색 상태를 출력

void output(const char* title, int dist) {

if(dist > 0)

        printf("\n[%s] (%d)\n", title, dist);

    else

        printf("\n[%s]\n", title);

    for(int a=0; a<n; a++) {

        for(int b = 0; b < m; b++) {

            printf("%3d", M[a][b]);

        }

        printf("\n");

    }

}

// bfs(시작행sa, 시작열sb, 거리dist)

void bfs(int sa, int sb, int dist) {

    queue<vertex> q;

    q.push({sa, sb, dist});  // 큐에 현재 시작 삽입

while(!q.empty()) {   // 큐가 빌 때까지 반복

vertex v = q.front(); // 큐의 첫 번째 항목 꺼내기

q.pop();              // 큐에서 첫 번째 항목 삭제

M[v.a][v.b]=v.d;  // 거리 표시

// 목적지에 도달하면 성공 출력하고 탈출

if(v.a==Ga && v.b==Gb) {

            output("BFS search success", v.d);

            min_dist = v.d; // 답 저장

return;

        }

        for(int i=0; i<4; i++) {

            int na=v.a+da[i];

            int nb=v.b+db[i];

            if(safe(na, nb) && M[na][nb]==-1) {

                q.push({na, nb, v.d+1});  // 다음 위치를 큐에 삽입

M[na][nb]=-1;  // 방문했음 표시(벽으로 간주)

            }

        }

    }

    output("BFS search fail", -1); // 여기까지 오면 탐색 실패임

}

// a행, b열에서 dfs, 현재까지 계산한 거리는 d

void dfs(int a, int b, int d) {

    M[a][b] = d;

    // 목적지에 도달하면,

    if(a==Ga && b==Gb) {

        if(min_dist > d)

            min_dist=d;

        output("DFS search success", d);

        return;

    }

    int noway=0; // 현재 위치에서 이동 불가능 방향 개수

for(int i=0; i<4; i++) {

        int na = a+da[i];

        int nb = b+db[i];

        if(safe(na, nb) && M[na][nb]==-1) {

            dfs(na, nb, d+1);

            M[na][nb]=-1;  // 백트랙할 경우 길복원

}

        else

            noway++; // 이동불가 카운터 증가

if(noway==4) // 4방향 모두 길이 막혀있으면,

            output("DFS search fail", -1);

    }

}

int main(void) {

    input();

    output("initial state",-1);

    // dfs 또는 bfs 하나의 함수만 호출할 것!

    // Sa행 Sb열에서 DFS시작

dfs(Sa, Sb, 1);

    // Sa행 Sb열에서 BFS시작

//bfs(Sa, Sb, 1);

    output("last state",-1);

    printf("%d\n", min_dist);

    return 0;

}



최단경로 이동하기

▪ 문제

 N행 M열로 구성된 사각형 모양의 게임판에서 출발지에서 목적지까지 이동하는 최

단거리를 구하고, 최단거리로 이동하는 모든 방법의 갯수를 계산하는 프로그램을

작성하시오.  

게임판에서 이동은 상하좌우로만 이동 가능하며, 대각선으로는 이동할 수 없다.

 예를 들어 's'는 출발지 'g'는 목적지 'o'는 이동 가능한 칸, 'x'는 이동 불가

능한 칸이라고 하자. 만약 아래 그림과 같이 지도가 입력되면, 출발지에서 목적지

까지 이동하는 최단거리는 6이고 최단거리로 이동하는 방법은 총 4가지가 존재한다.

369• 출처: 2023 전국상업경진대회 비즈니스프로그래밍 부문 시도예선 8번



최단경로 이동하기

▪ 입력형식

• 첫 번째 줄에 게임판의 크기가 N행 M

열이 자연수로 입력된다.

  (4 <= N, M <= 50)

• 두 번째 줄부터 N행 M열의 지도 정보

가 입력된다('s'는 출발지 'g'는 목적지

'o'는 이동 가능한 칸, 'x'는 이동 불가능

한 칸을 의미, 알파벳은 모두 소문자임)

▪ 출력형식

• 첫 번째 줄에 출발지에서 목적지까지 이

동하는 최단거리를 정수로 출력한다 .  

(출발지에서 목적지로 가는 길이 없는 입

력은 주어지지 않는다)

• 두 번째 줄에 최단거리로 이동하는 방법

의 가짓수를 출력한다.

▪ 입력과 출력의 예

입력 예2 출력 예2

3 4

sooo

ooxo

ooog

4

• 출처: 2023 전국상업경진대회 비즈니스프로그래밍 부문 시도예선 8번



원하는 물의 양 얻기(water pouring puzzle)

▪ 문제

세 개의 컵 A, B, C가 주어지는데 각 a리터, b리

터, c리터의 물을 담을 수 있다.

컵 C에 물을 가득 가득 채운 상태에서 출발하여

세 개의 컵의 물을 이리 저리 옮겨 담아 정확히

원하는 d리터를 물을 최소 몇 번의 교환 만에 얻

어 낼 수 있는지 알아내는 프로그램을 작성하시

오. 단, 넘치게 물을 부어서 물을 버리는 것은 불

허한다.

예를 들어 컵 A, B, C의 용량이 3L, 7L, 11L 일 때

5L의 물을 얻으려면 C컵에 물을 가득 채운 상태

에서 아래와 같이 3번만 교환하면 된다.

① 11L 컵에서 3L 컵으로 물을 부어 8L만 남기고

② 3L 컵의 물을 7L 비커로 옮기고

③ 11L 컵에서 3L 컵로 물을 부으면 11L 비커에

5L만 남게 된다.

▪ 입력형식

1) 첫 번째 줄에 세 컵의 용량 a, b, c가 공백으로

분리되어 자연수로 입력된다.                    . 

(1 ≤ a, b, c ≤ 200)

2) 두 번째 줄에 원하는 물의 양 d가 자연수로 입

력된다.  (1 ≤ d ≤ 200)

▪ 출력형식

1) d리터를 물을 얻는데 필요한 최소의 교환 횟수

를 출력한다.

2) 만약, 아무리 교환해도 d리터의 물을 얻어낼 수

없다면 –1을 출력한다.

▪ 입력과 출력의 예

입력 예1 출력 예1

3 7 11 

5

3

https://gifted.datahub.pe.kr/3cup_water_pouring_quiz.html

https://gifted.datahub.pe.kr/3cup_water_pouring_quiz.html


원하는 물의 양 얻기(기본설계)

374

#include <iostream>

#include <vector>

#include <algorithm>

#include <queue>

using namespace std;

struct state {

    int A, B, C, cnt;

};

int send[] = {0, 0, 1, 1, 2, 2};

int recv[] = {1, 2, 0, 2, 0, 1};

//A B의 무게만 있으면 C의 무게가 고정되므로 2개로만 체크 가능

bool visited[201][201];  

// A B C 물의 양을 저장하는 배열

int cups[3]; 

int d; // 원하는 물의 양

int BFS();

int main() {

    cin >> cups[0] >> cups[1] >> cups[2];

    cin >> d;

    cout << BFS() << endl;

}

int BFS() {

    queue<state> q;

    // 처음 상태: A=0, B=0, C=가득, 횟수=0

    q.push({0, 0, cups[2], 0}); 

    visited[0][0] = true;

    while (!q.empty()) {

    }

}

3cup_water_pouring_quiz.cpp

https://gifted.datahub.pe.kr/src/GRAPH/bfs/3cup_water_pouring_quiz.cpp


375

int BFS() {

     queue<state> q;

    // 처음 상태: A=0, B=0, C=가득, 횟수=0

    q.push({0, 0, cups[2], 0}); 

    visited[0][0] = true;

    while (!q.empty()) {

        state cur = q.front();

        q.pop();

        if (cur.A==d || cur.B==d || cur.C==d) {  // 원하는 물의 양을 얻었으면

return cur.cnt;

        }

        for (int k = 0; k < 6; k++) { // A->B, A->C, B->A, B->C, C->A, C->B 6개의 케이스로 이동

int next[] = { cur.A, cur.B, cur.C };

            next[recv[k]] += next[send[k]];

            next[send[k]] = 0;

            if (next[recv[k]] > cups[recv[k]]) { // 대상 물통의 용량보다 물이 많아 넘칠 때

// 초과하는 만큼 다시 이전 물통에 넣어줌

next[send[k]] = next[recv[k]] - cups[recv[k]];

                next[recv[k]] = cups[recv[k]]; // 대상 물통은 최대로 채워줌

}

            if (!visited[next[0]][next[1]]) { // A와 B의 물의 양을 통하여 방문 배열 체크

visited[next[0]][next[1]] = true;

                state neo = {next[0], next[1], next[2], cur.cnt+1};

                q.push(neo);

            }

        }

    }

}



376

#include <iostream>

#include <vector>

#include <algorithm>

#include <queue>

using namespace std;

struct task {

    char from, to;

    int  cnt, A, B, C;

};

struct state {

    int A, B, C, cnt;

    vector<task> his;

};

int send[] = {0, 0, 1, 1, 2, 2};

int recv[] = {1, 2, 0, 2, 0, 1};

//A B의 무게만 있으면 C의 무게가 고정되므로 2개로만 체크 가능

bool visited[201][201];

// A B C 물의 양을 저장하는 배열

int cups[3];

char cups_name[3] = {'A','B','C'};

int d; // 원하는 물의 양

state BFS();

int main() {

    cin >> cups[0] >> cups[1] >> cups[2];

    cin >> d;

    state s = BFS();

    cout << s.cnt << endl;

    vector<task> tv = s.his;

    for(task t : tv)

      printf("(%2d) %c->%c [%d, %d, %d]\n", 

              t.cnt, t.from, t.to, t.A, t.B, t.C);

}

state BFS() {

    queue<state> q;

    // 처음 상태: A=0, B=0, C=가득, 횟수=0

    q.push({0, 0, cups[2], 0, vector<task>()});

    visited[0][0] = true;

    while (!q.empty()) {

        state cur = q.front();

        q.pop();

        if (cur.A==d || cur.B==d || cur.C==d) {  // 원하는 물의 양을 얻었으면

return cur;

        }

        // A->B, A->C, B->A, B->C, C->A, C->B 6개의 케이스로 이동

for (int k = 0; k < 6; k++) {

            int next[] = { cur.A, cur.B, cur.C };

            next[recv[k]] += next[send[k]];

            next[send[k]] = 0;

            if (next[recv[k]] > cups[recv[k]]) { // 대상 물통의 용량보다 물이 많아 넘칠 때

// 초과하는 만큼 다시 이전 물통에 넣어줌

next[send[k]] = next[recv[k]] - cups[recv[k]];

                next[recv[k]] = cups[recv[k]]; // 대상 물통은 최대로 채워줌

}

            if (!visited[next[0]][next[1]]) { // A와 B의 물의 양을 통하여 방문 배열 체크

vector<task> tv(cur.his.begin(), cur.his.end());

                tv.push_back({cups_name[send[k]], cups_name[recv[k]],

                              cur.cnt+1, next[0], next[1], next[2]});

                state neo = {next[0], next[1], next[2], cur.cnt+1, tv};

                q.push(neo);

                visited[next[0]][next[1]] = true;

            }

        }

    }

}

3cup_water_pouring_sol.cpp

https://gifted.datahub.pe.kr/src/GRAPH/bfs/3cup_water_pouring_sol.cpp


가중치 간선 맵(미로)에서

최소비용 경로 탐색하기



가중치 간선 맵(미로)?

▪ 동일 가중치 간선 맵 ▪ 상이 가중치 간선 맵



연구활동 가는 길

▪ 문제

정올이는 GSHS에서 연구활동 교수님을 뵈러

A대학교를 가려고 한다. 출발점과 도착점을 포

함하여 지역이 n개, 한 지역에서 다른 지역으로

가는 방법이 총 m개이며 GSHS는 지역 1이고

S대학교는 지역 n이라고 할 때 대학까지 최소

비용을 구하시오.

• 최소 비용이 드는 경로 : 1→3→5→7, 

• 최소 비용 : 69+59+21=149

▪ 입력

첫 번째 줄에는 지점의 수 n과 간

선의 수 m이 공백으로 구분되어

입력된다. 다음 줄부터 m줄에 걸

쳐서 두 정점의 번호와 가중치 w

가 입력된다(자기 간선, 멀티 간

선이 있을 수 있다).

(2≤n≤15, 1≤m≤30, 1≤w≤200)

▪ 출력

대학까지 가는데 드는 최소 비용

을 출력한다. 

만약 갈 수 없다면 “-1”을 출력한

다.

379

입력 예 출력 예

7 11
1 2 47
1 3 69
2 4 57
2 5 124
3 4 37
3 5 59
3 6 86
4 6 27
4 7 94
5 7 21
6 7 40

149



연구활동 가는 길

▪ 초기 설계

380

void output(int W) {

    for(int v : path)

        printf("%d-", v);

    printf("\b [%d]\n", W);

}

// 정점 V에서 목적지까지 가는 거리를 계산해라, 

// 현재까지 이동 비용은 W이다.

void dfs(int V, int W) {

    // 세부구현 필요

}

int main() {

input();

dfs(1, 0);  // 정점 1, 거리 0에서 시작

printf("\nmin: %d\n", sol==INT_MAX ? -1 : sol);

return 0;

}

#include <stdio.h>

#include <limits> 

#include <iostream>

#include <vector>

#define MAX_V   15   // 최대 정점 개수

using namespace std;

int n, m;

int G[MAX_V+1][MAX_V+1];  // 연결정보를 저장하는 인접행렬

int visited[MAX_V+1];  // 방문여부를 저장하는 배열

int sol=INT_MAX;

vector<int> path;   // 방문 정점 순서를 기록하는 벡터

void input() {

scanf("%d %d", &n, &m);

for(int i=0; i<m; i++) {

int s, e, w;

scanf("%d %d %d", &s, &e, &w);

G[s][e] = G[e][s] = w;

}  

}

research_path_try1.cpp

https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try1.cpp


연구활동 가는 길

▪ solve() 함수 구현 – DFS

def dfs(k):

1) 정점 k를 처리하고 방문한 것으로 표시

2) k와 연결된 모든 정점에 대하여

방문한적이 없으면 그 정점에서 dfs,

dfs가 완료되면 되돌아 오기

381

// 정점 V에서 목적지까지 가는 거리를 계산해라, 

// 현재까지 이동거리는 W이다.

void dfs(int V, int W) {

  path.push_back(V);

  visited[V] = 1;     // 방문함을 표시

  // 마지막 n 위치에 도달했으면...

  if(V == n)  {

    // 더 짧은 거리를 찾았으면 업데이트 함.

   if(W < sol) sol = W;

    output(W);

    return;

  }

  for(int i=1; i<=n; i++) {

    // i를 방문한 적이 없고, 현재V와 i가 연결되어 있다면,

// (0이 아니면 연결되어 있다는 뜻)...

    if(!visited[i] && G[V][i])  {

      solve(i, W+G[V][i]);    // 정점 i에서 dfs

      visited[i] = 0;         // 백트랙시 방문정보 해제

      path.pop_back();

    }

  }

  return;

}

i
V

?

?

?



383

#include <stdio.h>

#include <limits>

#include <iostream>

#include <vector>

#define MAX_V   15   // 최대 정점 개수

using namespace std;

int n, m;

int G[MAX_V+1][MAX_V+1];

int visited[MAX_V+1];

int sol=INT_MAX;

vector<int> path;

void input() {

scanf("%d %d", &n, &m);

for(int i=0; i<m; i++) {

int s, e, w;

scanf("%d %d %d", &s, &e, &w);

G[s][e] = G[e][s] = w;

}  

}

void output(int W) {

    for(int v : path)

        printf("%d-", v);

    printf("\b [%d]\n", W);

}

연구활동 가는 길 전체탐색(DFS) - 소스코드
void dfs(int V, int W) {

  if(V == n)  { // 마지막 n 위치에 도달했으면...

    // 더 짧은 거리를 찾았으면 업데이트 함.

   if(W < sol) sol = W;

    output(W);

    return;

  }

  for(int i=1; i<=n; i++) {

    // i를 방문한 적이 없고, 현재V와 i가 연결되어 있다면,

// (0이 아니면 연결되어 있다는 뜻)...

    if(!chk[i] && G[V][i])  {

       path.push_back(i);

       visited[i]=1;

       dfs(i, W+G[V][i]);

       visited[i]=0;

       path.pop_back();

    }

  }

}

int main() {

input();

  path.push_back(1);

  visited[1]=1;

  dfs(1, 0); // 정점 1, 거리 0에서 시작

printf("\nmin: %d\n", sol==INT_MAX ? -1 : sol);

return 0;

}



384

#include <stdio.h>

#include <limits>

#include <iostream>

#include <vector>

#define MAX_V   15   // 최대 정점 개수

using namespace std;

int n, m;

int G[MAX_V+1][MAX_V+1];

int visited[MAX_V+1];

int sol=INT_MAX;

vector<int> path;

void input() {

scanf("%d %d", &n, &m);

for(int i=0; i<m; i++) {

int s, e, w;

scanf("%d %d %d", &s, &e, &w);

G[s][e] = G[e][s] = w;

}  

}

void output(int W) {

    for(int v : path)

        printf("%d-", v);

    printf("\b [%d]\n", W);

}

연구활동 가는 길 전체탐색(DFS) - 소스코드
// 정점 V에서 목적지까지 가는 거리를 계산해라, 

// 현재까지 이동거리는 W이다.

void dfs(int V, int W) {

  path.push_back(V);

  visited[V] = 1;

  // 마지막 n 위치에 도달했으면...

  if(V == n)  {

    // 더 짧은 거리를 찾았으면 업데이트 함.

   if(W < sol) sol = W;

    output(W);

    return;

  }

  for(int i=1; i<=n; i++) {

    // i를 방문한 적이 없고, 현재V와 i가 연결되어 있다면,

// (0이 아니면 연결되어 있다는 뜻)...

    if(!visited[i] && G[V][i])  {

      dfs(i, G[V][i]+W);

      visited[i] = 0;

      path.pop_back();

    }

  }

}

int main() {

input();

dfs(1, 0);  // 정점 1, 거리 0에서 시작

printf("\nmin: %d\n", sol==INT_MAX ? -1 : sol);

return 0;

}

research_path_try2.cpp

research_path_try2.cpp

https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try2.cpp
https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try1.cpp
https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try1.cpp
https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try1.cpp


연구활동 가는 길

▪ 탐색의 배제1

• 탐색배제 조건

• 위 조건을 만족할 경우, 더 이

상 탐색하지 않더라도 해를 구

하는 데 전혀 문제가 없음

현재 알아낸 최소 거리 > 

   지금까지 구한 경로의 거리



연구활동 가는 길

▪ 탐색의 배제1

• 탐색배제 조건

• 위 조건을 만족할 경우, 더 이

상 탐색하지 않더라도 해를 구

하는 데 전혀 문제가 없음

현재 알아낸 최소 거리 > 

   지금까지 구한 경로의 거리

void solve(int V, int W) {

  path.push_back(V);

  chk[V] = 1;

// 현재 알아낸 최소 거리 > 지금까지 구한 거리

if(W > sol) return;

  // 마지막 n 위치에 도달했으면...

  if(V == n)  {

    // 더 짧은 거리를 찾았으면 업데이트 함.

    if(W < sol) sol = W;

    output(W);

    return;

  }

  for(int i=1; i<=n; i++) {

    if(!chk[i] && G[V][i])  {

      solve(i, W+G[V][i]);

      path.pop_back();

      chk[i] = 0;

    }

  }

}



// 탐색배제1 사용

int counter=0;

void solve(int V, int W) {

  counter++;

  path.push_back(V);

  chk[V] = 1;

if(W > sol) return;

  if(V == n)  {

    if(W < sol) sol = W;

    for(int i=0; i<path.size(); i++)

      printf("%d-", path[i]);

    printf("\b : [%d]\n", W);

    return;

  }

  for(int i=1; i<=n; i++) {

    if(!chk[i] && G[V][i])  {

      solve(i, W+G[V][i]);

      path.pop_back();

      chk[i] = 0;

    }

  }

}

// 기존 코드

int counter=0;

void solve(int V, int W) {

  counter++;  

  path.push_back(V);

  chk[V] = 1;

  if(V == n)  {

    if(W < sol) sol = W;

    for(int i=0; i<path.size(); i++)

      printf("%d-", path[i]);

    printf("\b : [%d]\n", W);

    return;

  }

  for(int i=1; i<=n; i++) {

    if(!chk[i] && G[V][i])  {

      solve(i, W+G[V][i]);

      path.pop_back();

      chk[i] = 0;

    }

  }

}

연구활동 가는 길 – 수행 횟수 비교 research_path_try3.cpp

research_path_try3.cpp

https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try3.cpp
https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try1.cpp
https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try1.cpp
https://gifted.datahub.pe.kr/src/GRAPH/dfs/research_path_try1.cpp


연구활동 가는 길

▪ 탐색의 배제2

• 가장 짧은 경로일 가능성이 높은 길

을 탐욕법으로 하나 찾은 뒤,

• 탐색배제1 방법을 함께 사용

// 탐색배제2: 탐욕법 길찾기

int greedy_chk[MAX_V+1];

void greedy_ans(int V) {

  int W=0, t;

  sol=0;

  greedy_chk[V]=1;

  printf("\nGreedy path: %d", V);

  // 탐색 정점 V가 목적지에 도달할 때까지…

  while(V != n) {

    int min=MAX_INT;

    // 모든 G[V][i]에 대하여 최소값 탐색

    for(int i=1; i<=n; i++) {

      // 방문한적 없고, 연결되어 있고, 더 작은 값이면,

      if(!greedy_chk[i] && G[V][i] && G[V][i]<min) {

        greedy_chk[i]=1;  // 방문을 표시

        min=G[V][i]; // 새로운 최소값으로 업데이트

        t=i; // 새로운 최소값인 정점을 저장해 둠

      }

    }

if(V != t) { // 다음 정점으로 이동이 되면

      sol+=G[V][t]; // 거리를 누적

V=t;  // 가장 짧은 거리의 점점으로 이동

printf("-%d", V);

   }

    else {    // 이동불가에 빠졌으면(탐욕법으로 길 찾기 실패)

sol=MAX_INT;

      break;  // 탈출

    }  

  }

  printf(" [%d]\n", sol); // 탐욕법으로 찾은 최소경로 길이 출력

}

 

i
V



389

#include <stdio.h>

#include <limits.h>

#include <vector>

#define MAX_V   15   // 최대 정점 개수

using namespace std;

int n, m;

int G[MAX_V+1][MAX_V+1];

int chk[MAX_V+1];

int sol=INT_MAX;

int counter=0;

vector<int> path;

void solve(int V, int W);

void greedy_ans(int V);

void input() {

  scanf("%d %d", &n, &m);

  for(int i=0; i<m; i++) {

    int s, e, w;

    scanf("%d %d %d", &s, &e, &w);

    G[s][e] = G[e][s] = w;

  }

}

int main() {

input();

greedy_ans(1);  // 여기 주석처리시 탐색배제1만 적용됨

solve(1, 0);  // 정점 1, 거리 0에서 시작

printf("\nPath min: %d\n", sol==MAX_INT ? -1 : sol);

printf("Vertex counter: %d\n", counter);

return 0;

}

연구활동 가는 길 전체탐색(DFS) – 탐색배제1+2 전체 소스코드

void output(int W) {

    for(int v : path)

        printf("%d-", v);

    printf("\b [%d]\n", W);

}

// 정점 V에서 거리를 계산해라,

// 현재까지 이동거리는 W이다.

void solve(int V, int W) {

  counter++;

  path.push_back(V);

  chk[V] = 1;

  // 현재 알아낸 최소 거리

  //   > 지금까지 구한 최소 경로의 거리

if(W>sol) return; // 여기도 주석처리시 전체탐색

  // 마지막 n 위치에 도달했으면...

  if(V == n)  {

    // 더 짧은 거리를 찾았으면 업데이트 함.

   if(W < sol) sol = W;

    output(W);

    return;

  }

  for(int i=1; i<=n; i++) {

    // i를 방문한 적이 없고, 현재V와 i가 연결되어

있다면,

// (0이 아니면 연결되어 있다는 뜻)...

    if(!chk[i] && G[V][i])  {

      solve(i, G[V][i]+W);

      path.pop_back();

      chk[i] = 0;

    }

  }

}

// 탐색배제2 사용

int greedy_chk[MAX_V+1];

void greedy_ans(int V) {

  int W=0, t;

  sol=0;

  greedy_chk[V]=1;

  printf("\nGreedy path: %d", V);

  // 탐색 정점 V가 목적지에 도달할 때까지…

  while(V != n) {

    int min=MAX_INT;

    // 모든 G[V][i]에 대하여 최소값 탐색

for(int i=1; i<=n; i++) {

      // 방문한적 없고, 연결되어 있고, 더 작은 값이면,

      if(!greedy_chk[i] && G[V][i] && G[V][i]<min) {

        greedy_chk[i]=1;  // 방문을 표시

min=G[V][i]; // 새로운 최소값으로 업데이트

t=i;  // 새로운 최소값인 정점을 저장해 둠

}

    }

    if(V!=t) {  // 다음 정점으로 이동하면

      sol+=G[V][t]; // 거리를 누적

V=t; // 가장 짧은 거리의 점점으로 이동

printf("-%d", V);

    }

    else {    // 이동불가에 빠짐(길찾기 실패)

sol=MAX_INT;

      break;  // 탈출

    }

  }

  // 탐욕법으로 찾은 최소경로 길이 출력

  printf(" [%d]\n", sol); 

}



연구활동 가는 길 – 탐색의 배제

▪ 성능 비교 테스트 데이터

※입력3: 탐욕법 길찾기가 실패되는 케이스

▪ 탐색 횟수 비교 결과

▪ 배제된 공간 비율

입력 1 입력 2 입력 3 입력 4

5 8
1 2 2
1 3 1
1 4 3
2 5 2
2 3 1
4 5 3
3 5 2
1 5 14

7 11
1 2 47
1 3 69
2 4 57
2 5 124
3 4 37
3 5 59
3 6 86
4 6 27
4 7 94
5 7 21
6 7 40

8 13
1 2 47
1 3 69
1 7 50
2 4 57
2 5 124
3 4 107
3 5 59
3 6 86
4 6 27
4 7 14
5 7 81
6 7 40
7 8 90

8 14
1 2 47
1 3 69
1 7 50
2 4 57
2 5 124
3 4 107
3 5 59
3 6 86
4 6 27
4 7 14
5 7 81
6 7 40
5 8 30
7 8 90

알고리즘 입력 1 입력 2 입력 3 입력 4

전체탐색 12 47 153 176

탐색배제1 10 16 49 39

탐색배제2 7 13 49 28

알고리즘 입력 1 입력 2 입력 3 입력 4

탐색배제1 12.0% 66.0% 69.9% 77.8%

탐색배제2 41.7% 72.3% 69.9% 84.1%



다익스트라(dijkstra) 알고리즘 

▪ 개요

• 그래프의 한 정점(Vertex)에서 모든

정점까지의 최단거리를 각각 구하는 알

고리즘

• 음의 간선이 없을 때 정상 작동

• 네비게이션소프트웨어의 기본 알고리즘

https://youtu.be/tZu4x5825LI

▪ EBS 해설 동영상

• https://youtu.be/tZu4x5825LI

▪ 특징

• 에츠허르 다익스트라가 고안한 알고리

즘으로, 그가 처음 고안한 알고리즘은 

𝑂(𝑉2)의 시간복잡도 였다.

• 이후 힙 트리등을 이용한 개선된 알고

리즘이 나오며 𝑂( 𝑉 + 𝐸 𝑙𝑜𝑔𝑉) 의 시간

복잡도를 가지게 되었다.

391

https://youtu.be/tZu4x5825LI


다익스트라(dijkstra) 알고리즘 

▪ 특징

392



다익스트라(dijkstra) 알고리즘 

▪ 과정1 ▪ 과정2

건물 집 미용실 슈퍼마켓 영어학원레스토랑 은행 학교

거리

최대거리 테이블 초기화

393

건물 집 미용실 슈퍼마켓영어학원 레스토랑 은행 학교

거리 0 5 10 9 - - -



다익스트라(dijkstra) 알고리즘 

▪ 과정3 ▪ 과정4

394

3까지 거리 8인거
알고 있으므로
거리 10에서
연걸하는 건 의미
없음.

건물 집 미용실 슈퍼마켓 영어학원레스토랑 은행 학교

거리 0 5 10→8 9 - 16 -

건물 집 미용실 슈퍼마켓 영어학원레스토랑 은행 학교

거리 0 5 8 9 11 16 -



다익스트라(dijkstra) 알고리즘 

▪ 과정5 ▪ 과정6

395

건물 집 미용실 슈퍼마켓영어학원레스토랑 은행 학교

거리 0 5 8 9 11 16 21

건물 집 미용실 슈퍼마켓영어학원레스토랑 은행 학교

거리 0 5 8 9 11 16→15 21



다익스트라(dijkstra) 알고리즘 

▪ 과정7 ▪ 과정8

396

건물 집 미용실 슈퍼마켓영어학원레스토랑 은행 학교

거리 0 5 8 9 11 16 21→17

건물 집 미용실 슈퍼마켓영어학원레스토랑 은행 학교

거리 0 5 8 9 11 15 17



다익스트라(dijkstra) 알고리즘 

▪ 알고리즘

1) 출발점으로부터의 최단거리를 저장할 배열 d[v]를 만들고 초기화 한다.

2) 현재 노드를 나타내는 변수 A에 출발 노드의 번호를 저장한다.

3) A에 인접한 모든 노드 B에 대해, d[A]+cost(A~B)와 d[B]의 값을 비교

4) 만약 d[A] + P[A][B]의 값이 더 작다면, 즉 더 짧은 경로라면, d[B]의 값을 이
값으로 갱신한다.

5) A의 모든 이웃 노드 B에 대해 이 작업을 수행한다.

6) A의 상태를 "방문 완료"로 바꾼다. 그러면 이제 더 이상 A는 사용하지 않는다.

7) "미방문" 상태인 모든 노드들 중, 출발점으로부터의 거리가 제일 짧은 노드 하나를
골라서 그 노드를 A에 저장한다.

8) 도착 노드가 "방문 완료" 상태가 되거나, 혹은 더 이상 미방문 상태의 노드를 선
택할 수 없을 때까지, 3~7의 과정을 반복한다.

▪ 7번 단계에서, 거리가 가장 짧은 노드를 선택 하려면 모든 노드를 순회해야 하므로 시간
복잡도에 결정적인 영향

397



다익스트라(dijkstra) 알고리즘 

▪ 그래프로 표현 ▪ 데이터 표현

정점수 노드수 시작정점
1
집

3
슈퍼
마켓

2
미용
실

4
영어
학원

5
레스
토랑

6
은행

7
학교

5
10

3

11

3

4

10

9

7
12

2

7 12 1

1 2 5 

1 3 10

1 4 9

2 3 3

2 6 11

3 4 7

3 5 3

3 6 10

4 7 12 

4 6 7

5 6 4

6 7 2

398

V [0] [1] [2]

1 (2,5) (3,10) (4,9)

2 (3,3) (6,11)

3 (4,7) (5,3) (6,10)

4 (7,12) (6,7)

5 (6,4)

6 (7,2)

7

vector<noco> graph[100001];

7



개선된 다익스트라 알고리즘 𝑶( 𝑽 + 𝑬 𝒍𝒐𝒈 𝑽 )
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열

vector<noco> graph[100001];

// 최단 거리 테이블 dist[a]: a노드까지의 최단거리를 저장

int dist[100001];

// 직전 노드 저장

int from[100001];

void output_dist_ary() { // 최단거리 배열 출력

    putchar('\n');

    for(int i=1; i<=n; i++)

        printf("[%d]%d, ", i, dist[i]);

    printf("\b\b \n");

}

// 우선순위 큐 내용물 출력

void output_pq(priority_queue<noco> pq) {

    while(!pq.empty()) {

        noco nc = pq.top();

        // {노드, (비용)}

        printf("{%d,(%d)} ", nc.node, nc.cost);

        pq.pop();

    }

    putchar('\n');

}

#include <vector>

#include <queue>

#include <iostream>

#define INF 1e9 // 무한을 의미하는 값으로 10억을 설정

using namespace std;

struct noco {

    int node;

    int cost;

    //noco(int n, int c) : node(n), cost(c) {}

    bool operator<(noco b) const {

        return cost > b.cost;  // cost기준 오름차순

    }

};

// 위 구조체의 cost멤버는 graph 변수에서는 노드간 거리의 의미로

// 우선순위 큐 pq에서는 계산된 최단거리의 의미로 사용됨

// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)

// 노드의 개수는 최대 100,000개라고 가정

int n, m, start;

dijkstra_log.cpp

건물 집 미용실 슈퍼마켓영어학원레스토랑 은행 학교

거리 0 5 8 9 - 16 -

pq는 아직 최단거리 계산이

완료되지 않은 (슈퍼마켓, 8), 

(영어학원, 9), (은행, 16) 를

갖고 있고 pop() 하면 가장

거리가 짧은 원소를 뽑아주는

역할을 한다.

https://gifted.datahub.pe.kr/src/gifted/dijkstra/dijkstra_log.cpp


개선된 다익스트라 알고리즘 𝑶( 𝑽 + 𝑬 𝒍𝒐𝒈 𝑽 )

400

int main(void) {

    cin >> n >> m >> start;

    // 모든 간선 정보를 입력받기

for (int i = 0; i < m; i++) {

        int a, b, c;

        cin >> a >> b >> c;

        // a번 노드에서 b번 노드로 가는 비용이 c라는 의미

graph[a].push_back({b, c});

        // 양방향 연결일 경우 아래 코드 활성화

//graph[b].push_back({a, c});

    }

    // 최단 거리 테이블을 모두 무한으로 초기화

fill(dist, dist + 100001, INF);

    // 다익스트라 알고리즘을 수행

dijkstra(start);

    putchar('\n');

    output_shortest_path(n);

    putchar('\n');

    // 모든 노드로 가기 위한 최단 거리를 출력

for (int i = 1; i <= n; i++) {

        printf("%d 까지 최단거리: ", i);

        // 도달할 수 없는 경우, 무한(INFINITY)이라고 출력

if (dist[i] == INF) {

            cout << "INFINITY" << '\n';

        }

        // 도달할 수 있는 경우 거리를 출력

else {

            cout << dist[i] << '\n';

        }

    }

}



개선된 다익스트라 알고리즘 𝑶( 𝑽 + 𝑬 𝒍𝒐𝒈 𝑽 )
printf("%d(%d)의 인접노드 계산\n", now_node, now_dist);

        //현재 노드에 연결된 i번째 노드(graph[now_node][i])에 대하여

for (int i = 0; i < (int)graph[now_node].size(); i++) {

            // i번째 노드(graph[now_node][i])를 목적지로 설정

noco tar = graph[now_node][i];

            // 목적지까지 거리 = 현재 노드까지 거리 + 목적지까지 비용

int tar_dist = now_dist + tar.cost;

            // 현재 노드를 거쳐가는 거리가 다른 방법보다 짧으면,

            if (tar_dist < dist[tar.node]) {

                // target까지의 최단거리 테이블 업데이트

dist[tar.node] = tar_dist;

                // 이 정보를 pq에 삽입한다. 왜나하면, tar까지 최단거리가

                // 업데이트 되었으므로 인접노드를 더 짧게 방문할 수 있음.

pq.push({tar.node, tar_dist});

                // 목적지의 직전 노드가 now_node임을 저장

from[tar.node] = now_node;

                printf("  %d(%d)노드 업데이트\n", tar.node, tar_dist);

            }

            else

                printf("  %d(%d)노드 업데이트 안함\n", 

                           tar.node, dist[tar.node]);

        }

    }

}

void dijkstra(int start) {

    //output_dist_ary(); // 최단거리 테이블 내용 출력

    //output_pq(pq);     // 우선순위 큐 내용 출력

    // start에서 pq.node까지 최단 거리가 pq.cost이다.

    priority_queue<noco> pq;

    // 시작 노드까지의 거리는 0으로 설정하여, 큐에 삽입

pq.push({start, 0});

    dist[start] = 0;

    while (!pq.empty()) { // 큐가 비어있지 않다면

// 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기

int now_node = pq.top().node; // 현재 노드

        // start에서 현재 노드까지 알려진 최단거리

int now_dist = pq.top().cost; 

pq.pop();

        // 현재노드를 경유하는 인접노드들까지의 최단거리를 계산하려는데

        // 이미 계산해 놓은 dist[now_node]가 now_dist보다 작으면

        // 인접노드들의 최단거리를 계산하는 의미가 없음.

if (dist[now_node] < now_dist) {

            printf("%d(%d)의 인접노드 계산 건너뜀\n"

                , now_node, now_dist);

            continue;

        }

dijkstra_log.cpp

https://gifted.datahub.pe.kr/src/gifted/dijkstra/dijkstra_log.cpp


개선된 다익스트라 알고리즘 𝑶( 𝑽 + 𝑬 𝒍𝒐𝒈 𝑽 )

▪ 실행결과

402

void output_shortest_path(int dest) {

    if(dist[dest] == INF) {

        printf("there is no path to %d\n", dest);

        return;

    }

    deque<noco> pathstep;

    int now = dest;

    while(dist[now] > 0) {

        pathstep.push_front({now, dist[now]});

        now = from[now];

    }

    pathstep.push_front({now, dist[now]});

    printf("%d 까지 최단경로:\n", dest);

    for(noco a: pathstep)

        printf("%d(%d) > ", a.node, a.cost);

    printf("\b\b  \n");

}

7 12 1

1 2 5 

1 3 10

1 4 9

2 3 3

2 6 11

3 4 7

3 5 3

3 6 10

4 7 12 

4 6 7

5 6 4

6 7 2



다익스트라(dijkstra) 알고리즘 작동과정

▪ 그래프로 표현

403

1
집

3
슈퍼
마켓

2
미용
실

4
영어
학원

5
레스
토랑

6
은행

7
학교

5
10

3

11

3

4

10

9

7

12

2

7



다익스트라(dijkstra) 알고리즘의 적용

▪ 부산에서 서울까지 최단거리를 안내하는

내비게이터를 만드시오.

▪ 최단 경로는?

▪ 최단 경로 이동에 소요되는

시간은?

▪ 시뮬레이터

• https://gifted.datahub.pe.kr/dij

kstra_shortest_path_search.html

404

https://gifted.datahub.pe.kr/dijkstra_shortest_path_search.html
https://gifted.datahub.pe.kr/dijkstra_shortest_path_search.html
https://gifted.datahub.pe.kr/dijkstra_shortest_path_search.html


플로이드-워셜(Floyd-Warshall) 알고리즘

▪ 특징

• 다익스트라가 하나의 정점에서 다른

모든 정점까지의 최단 거리를 구하는

알고리즘이었다면,

• 플로이드-워셜은 모든 정점에서 다른

모든 정점까지의 최단 경로를 모두

구하는 알고리즘이다.

• 플로이드-워셜 알고리즘은 다익스트

라와는 달리 음의 간선도 사용가능

• 정점이 N개일 때 모든 정점에 대하여

𝑂(𝑁2)의 연산이 필요하므로 총 시간

복잡도는 𝑂 𝑁3 이 된다

▪ 알고리즘 과정

• 모든 노드 간의 최단거리를 구해야

하므로 2차원 인접 행렬을 구성

• 알고리즘은 여러 라운드로 구성

• 라운드마다 각 경로에서 새로운 중간

노드로 사용할 수 있는 노드를 선택

하고, 더 짧은 길이를 선택하여 줄이

는 과정을 반복

• 𝐷𝑎𝑏 = min(𝐷𝑎𝑏 ,
𝐷𝑎𝑘 + 𝐷𝑘𝑏)

의미: a에서 b로 가는 거리가 a에서k를

경유하여 b로 가는 길이 더 짧다면 최

단거리를 업데이트!

405



플로이드-워셜(Floyd-Warshall) 알고리즘

▪ 초기 그래프 ▪ 초기 인접행렬

406

f\t 1 2 3 4 5

1 0 5 INF 9 1

2 5 0 2 INF INF

3 INF 2 0 7 INF

4 9 INF 7 0 2

5 1 INF INF 2 0



플로이드-워셜(Floyd-Warshall) 알고리즘

▪ Round1: 1번 노드를 중간 노드로

설정

▪ Round1

407

f\t 1 2 3 4 5

1 0 5 INF 9 1

2 5 0 2 INF INF

3 INF 2 0 7 INF

4 9 INF 7 0 2

5 1 INF INF 2 0

f\t 1 2 3 4 5

1 0 5 INF 9 1

2 5 0 2 14 6

3 INF 2 0 7 INF

4 9 14 7 0 2

5 1 6 INF 2 0

2→1→1

2→1→2

2→1→3

2→1→4

2→1→5

3→1→1

3→1→2

3→1→3

3→1→4

3→1→5

1→1→1

1→1→2

1→1→3

1→1→4

1→1→5

4→1→1

4→1→2

4→1→3

4→1→4

4→1→5

5→1→1

5→1→2

5→1→3

5→1→4

5→1→5



플로이드-워셜(Floyd-Warshall) 알고리즘

▪ Round2: 2번 노드를 중간 노드로

설정

▪ Round2

408

f\t 1 2 3 4 5

1 0 5 INF 9 1

2 5 0 2 14 6

3 INF 2 0 7 INF

4 9 14 7 0 2

5 1 6 INF 2 0

2→2→1

2→2→2

2→2→3

2→2→4

2→2→5

3→2→1

3→2→2

3→2→3

3→2→4

3→2→5

1→2→1

1→2→2

1→2→3

1→2→4

1→2→5

4→2→1

4→2→2

4→2→3

4→2→4

4→2→5

5→2→1

5→2→2

5→2→3

5→2→4

5→2→5

f\t 1 2 3 4 5

1 0 5 7 9 1

2 5 0 2 14 6

3 7 2 0 7 8

4 9 14 7 0 2

5 1 6 8 2 0



플로이드-워셜(Floyd-Warshall) 알고리즘

▪ Round3: 3번 노드를 중간 노드로

설정

▪ Round3

409

2→3→1

2→3→2

2→3→3

2→3→4

2→3→5

3→3→1

3→3→2

3→3→3

3→3→4

3→3→5

1→3→1

1→3→2

1→3→3

1→3→4

1→3→5

4→3→1

4→3→2

4→3→3

4→3→4

4→3→5

5→3→1

5→3→2

5→3→3

5→3→4

5→3→5

f\t 1 2 3 4 5

1 0 5 7 9 1

2 5 0 2 14 6

3 7 2 0 7 8

4 9 14 7 0 2

5 1 6 8 2 0

f\t 1 2 3 4 5

1 0 5 7 9 1

2 5 0 2 9 6

3 7 2 0 7 8

4 9 9 7 0 2

5 1 6 8 2 0



플로이드-워셜(Floyd-Warshall) 알고리즘

▪ Round4: 4번 노드를 중간 노드로

설정

▪ Round4

410

2→4→1

2→4→2

2→4→3

2→4→4

2→4→5

3→4→1

3→4→2

3→4→3

3→4→4

3→4→5

1→4→1

1→4→2

1→4→3

1→4→4

1→4→5

4→4→1

4→4→2

4→4→3

4→4→4

4→4→5

5→4→1

5→4→2

5→4→3

5→4→4

5→4→5

f\t 1 2 3 4 5

1 0 5 7 9 1

2 5 0 2 9 6

3 7 2 0 7 8

4 9 9 7 0 2

5 1 6 8 2 0

f\t 1 2 3 4 5

1 0 5 7 9 1

2 5 0 2 9 6

3 7 2 0 7 8

4 9 9 7 0 2

5 1 6 8 2 0



플로이드-워셜(Floyd-Warshall) 알고리즘

▪ Round5: 5번 노드를 중간 노드로

설정

▪ Round5

411

2→5→1

2→5→2

2→5→3

2→5→4

2→5→5

3→5→1

3→5→2

3→5→3

3→5→4

3→5→5

1→5→1

1→5→2

1→5→3

1→5→4

1→5→5

4→5→1

4→5→2

4→5→3

4→5→4

4→5→5

5→5→1

5→5→2

5→5→3

5→5→4

5→5→5

f\t 1 2 3 4 5

1 0 5 7 9 1

2 5 0 2 9 6

3 7 2 0 7 8

4 9 9 7 0 2

5 1 6 8 2 0

f\t 1 2 3 4 5

1 0 5 7 3 1

2 5 0 2 9 6

3 7 2 0 7 8

4 3 9 7 0 2

5 1 6 8 2 0



플로이드-워셜(Floyd-Warshall) 알고리즘 구현

▪ 입력 데이터

▪ 출력

▪ 소스 코드

412

#include <iostream>

#define INF 1e9 // 무한을 의미하는 값으로 10억을 설정

#define MAX 101

using namespace std;

// 노드의 개수(N), 간선의 개수(M)

// 노드의 개수는 최대 101개라고 가정

int n, m;

// 2차원 배열(그래프 표현)를 만들기

int graph[MAX][MAX];

int main(void) {

    cin >> n >> m;

    // 최단 거리 테이블을 모두 무한으로 초기화

for (int i = 0; i < MAX; i++) {

        fill(graph[i], graph[i] + MAX, INF);

    }

5

6

1 2 5

1 4 9

1 5 1

2 3 2

3 4 7

4 5 2



플로이드-워셜(Floyd-Warshall) 알고리즘 구현

413

// 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화

for (int a = 1; a <= n; a++) {

        for (int b = 1; b <= n; b++) {

            if (a == b) graph[a][b] = 0;

        }

    }

// 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화

for (int i = 0; i < m; i++) {

        // a에서 b로 가는 비용은 c라고 설정

int a, b, c;

        cin >> a >> b >> c;

        graph[a][b] = c; 

        graph[b][a] = c; // 단방향 간선인 경우 삭제

    }

// 플로이드 워셜 알고리즘을 수행

for (int r = 1; r <= n; r++)  //라운드

        for (int a = 1; a <= n; a++) //출발지 

            for (int b = 1; b <= n; b++) { //목적지

                graph[a][b] = min(graph[a][b], 

                    graph[a][r] + graph[r][b]);

            }

// 수행된 결과를 출력

for (int a = 1; a <= n; a++) {

        for (int b = 1; b <= n; b++) {

            // 도달할 수 없는 경우, 무한(INF)이라고 출력

if (graph[a][b] == INF)

                cout << "INF" << ' ';

            // 도달할 수 있는 경우 거리를 출력

else

                printf("%3d ", graph[a][b]);

        }

        cout << '\n';

    }

}

f\t 1 2 3 4 5

1 0 5 INF 9 1

2 5 0 2 INF INF

3 INF 2 0 7 INF

4 9 INF 7 0 2

5 1 INF INF 2 0



웜 바이러스

▪ 문제

신종 바이러스인 웜 바이러스는 네트워크를

통해 전파된다. 한 컴퓨터가 웜 바이러스에 걸

리면 그 컴퓨터와 네트워크 상에서 연결되어

있는 모든 컴퓨터는 웜 바이러스에 걸리게 된

다.

예를 들어 7대의 컴퓨터가 <그림 1>과 같이

네트워크 상에서 연결되어 있다고 하자. 1번

컴퓨터가 웜 바이러스에 걸리면 웜 바이러스

는 2번과 5번 컴퓨터를 거쳐 3번과 6번 컴퓨

터까지 전파되어 2, 3, 5, 6 네 대의 컴퓨터는

웜 바이러스에 걸리게 된다. 하지만 4번과 7번

컴퓨터는 1번 컴퓨터와 네트워크상에서 연결

되어 있지 않기 때문에 영향을 받지 않는다.

어느 날 1번 컴퓨터가 웜 바이러스에 걸렸다. 

컴퓨터의 수와 네트워크 상에서 서로 연결되어

있는 정보가 주어질 때, 1번 컴퓨터를 통해 웜

바이러스에 걸리게 되는 컴퓨터의 수를 출력하

는 프로그램을 작성하시오.

414• 출처: 한국정보올림피아드(2004 지역본선 초등부 3번)



웜 바이러스

▪ 입력

첫째 줄에는 컴퓨터의 수가 주어진다. 컴퓨터

의 수는 100 이하인 양의 정수이고 각 컴퓨터

에는 1번 부터 차례대로 번호가 매겨진다. 둘

째 줄에는 네트워크 상에서 직접 연결되어 있

는 컴퓨터 쌍의 수가 주어진다. 이어서 그 수

만큼 한 줄에 한 쌍씩 네트워크 상에서 직접

연결되어 있는 컴퓨터의 번호 쌍이 주어진다.

▪ 출력

1번 컴퓨터가 웜 바이러스에 걸렸을 때, 1번 컴

퓨터를 통해 웜 바이러스에 걸리게 되는 컴퓨

터의 수를 첫째 줄에 출력한다.

▪ 입력과 출력의 예

415

입력 예 출력 예

7
6
1 2
2 3
1 5
5 2
5 6
4 7

4

• 출처: 한국정보올림피아드(2004 지역본선 초등부 3번)



웜 바이러스 풀이

416

#include <iostream>

#define INF 1e9 // 무한을 의미하는 값으로 10억을 설정

using namespace std;

// 노드의 개수(N), 간선의 개수(M)

// 노드의 개수는 최대 101개라고 가정

int n, m;

// 2차원 배열(그래프 표현)를 만들기

int graph[101][101];

int main(void) {

    cin >> n >> m;

    // 최단 거리 테이블을 모두 무한으로 초기화

for (int i = 0; i < 101; i++) {

        fill(graph[i], graph[i] + 101, INF);

    }

    // 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화

for (int a = 1; a <= n; a++) {

        for (int b = 1; b <= n; b++) {

            if (a == b) graph[a][b] = 0;

        }

    }

// 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화

for (int i = 0; i < m; i++) {

        // A에서 B로 가는 거리 1로 설정

int a, b;

        cin >> a >> b;

        graph[a][b] = 1;  // a에서 b로

        graph[b][a] = 1;  // b에서 a로 (양방향 간선)

    }

// 플로이드 워셜 알고리즘을 수행

for (int k = 1; k <= n; k++)

        for (int a = 1; a <= n; a++)

            for (int b = 1; b <= n; b++)

                graph[a][b] = 

                  min(graph[a][b], graph[a][k] + graph[k][b]);

    int count=0;

    for(int i = 1; i <= n; i++) {

        if(graph[1][i] != INF) //INF 아니면, 연결되어 있다는 뜻

count++;

    }

    // 1번 자신은 제외

cout << count-1 << endl;

}



DP (동적계획법)

(Dynamic Programming)

417



다이나믹 프로그래밍(DP)

▪ DP란?

• 큰 문제를 작은 문제로 나누어 푸는 문

제를 일컫는 말

• 한 번 계산한 문제는 다시 계산하지 않

도록 하는 알고리즘

▪ DP의 사용조건

• 최적 부분 구조(Optimal Substructure)

큰 문제를 작은 문제로 나눌 수 있고, 작은

문제의 답을 모아 큰 문제를 해결할 수 있는

경우를 의미

• 중복되는 부분 문제(Overlapping Subproblem)

동일한 작은 문제를 반복적으로 해결해야

하는 경우

▪ DP 사용하기

• DP는 특정한 경우에 사용하는 알고리

즘이 아니라 하나의 방법론이므로 다양

한 문제해결에 사용가능

• 진행과정

1) DP로 풀 수 있는 문제인지 확인한다.

2) 문제의 변수 파악

3) 변수 간 관계식 만들기(점화식)

4) 메모하기(memoization or tabulation)

5) 기저 상태 파악하기

6) 구현하기

418



▪ 재귀함수를 통한 피보나치 수열 구현

다이나믹 프로그래밍(DP)

▪ 피보나치 수열

피보나치 수열이란 이전 두 항의 합을 현재

의 항으로 설정하는 특징을 가진 수열

점화식 표현

419

#include <stdio.h>

int fibo(int x) {

   if(x==1 || x==2) 

      return 1;

   else

      return fibo(x-1) + fibo(x-2);

}

int main() {

    printf("%d", fibo(6));

}



• n이 커지면 커질수록 수행시간이 기하

급수적으로 늘어난다.

• f(6)을 계산할 때에 그림과 같이 f(2)가

여러 번 호출되는 것을 확인할 수 있다.

• 즉, 같은 연산을 여러 번 수행한다는 뜻

이고 이를 ‘중복되는 부분 문제’라고 하

며 이럴 때 DP가 필요하다.

• 피보나치 수열의 시간 복잡도는 𝑂(𝑛2)

이다. 예를 들어 f(30)을 계산하기 위해

약 10억 번의 연산을 수행해야 한다. 

다이나믹 프로그래밍(DP)

▪ 재귀함수로 구현했을 때 문제점

420



• 메모이제이션(Memoization) 이란?

• DP를 구현하는 방법 중 한 종류

• 한 번 구한 결과를 메모리 공간에 메모해

두고 같은 식을 호출하면 메모한 결과를

그대로 가져오는 기법

• 값을 기록해 놓는다는 점에서 캐싱

(Caching)이라고도 한다.

다이나믹 프로그래밍(DP)

▪ DP로 피보나치 수열 계산하기

• DP는 항상 사용할 수 없기 때문에 DP

의 사용 조건을 만족하는지 확인 필요

• DP의 사용조건

1) 큰 문제를 작은 문제로 나눌 수 있다.

2) 작은 문제에서 구한 정답은 그것을 포

함하는 큰 문제에서도 동일하다.

• f(30)을 구하기 위해 필요한 f(10) 값이,

• f(20)을 구하기 위해 필요한 f(10) 값과 동일

할 때,

421



▪ 출력 결과

▪ 호출되는 순서

다이나믹 프로그래밍(DP)

▪ DP로 피보나치 수열 구현(재귀적)

422

#include <stdio.h>

// 한번 계산한 결과를 메모이제이션 하기 위한 배열

unsigned long long D[100];  

unsigned long long fibo(int x) {

   printf("f(%d) ", x);

   if(x == 1 || x == 2) return 1;

   // 이미 계산한 적 있는 문제라면 그대로 반환

   if(D[x] != 0) return D[x];

   // 아직 계산하지 않은 문제라면 계산

   D[x] = fibo(x-1) + fibo(x-2);

   return D[x];

}

int main() {

   printf("\n%llu", fibo(6));

   return 0;

}

f(6) f(5) f(4) f(3) f(2) f(1) f(2) f(3) f(4)



다이나믹 프로그래밍(DP)

▪ DP 안한 재귀호출 ▪ DP 한 재귀호출

#include <stdio.h>

unsigned long long D[100];

unsigned long long fibo(int x) {

   if(x <= 2) return 1;

   if(D[x] != 0) return D[x];

   D[x] = fibo(x-1) + fibo(x-2);

   return D[x];

}

int main() {

    printf("%llu", fibo(50));

}

#include <stdio.h>

unsigned long long fibo(int x) {

   if(x==1 || x==2) 

      return 1;

   else

      return fibo(x-1) + fibo(x-2);

}

int main() {

    printf("%llu", fibo(50));

}

423



다이나믹 프로그래밍(DP)

▪ 탑다운(Top-Down)

• 하향식 (메모이제이션 or 메모 전략)

이라고도 함

• 큰 문제를 해결하기 위해 작은 문제를

호출하는 방식

• 여전히 재귀호출을 사용함

• 점화식을 이해하기 쉬운 장점

▪ 바텀업(Bottom-Up)

• 상향식 이라고도 함

• 가장 작은 문제들부터 답을 구해가며 전

체 문제의 답을 찾는 방식

• 모든 중간 답을 다 찾아냄

• 재귀 호출을 하지 않기 때문에 시간과 메

모리 사용량을 줄일 수 있는 장점

424

✓ DP 탑다운(Top-Down) vs 바텀업(Bottom-Up)

하향식을 사용하든 상향식을 사용하든 계산과 값의 흐름은 언제나 상향이다.



다이나믹 프로그래밍(DP)

▪ 피보나치 수열 DP 탑다운 구현 ▪ 피보나치 수열 DP 바텀업 구현

#include <stdio.h>

#define MAX 100

unsigned long long D[MAX+1];

void dp() {

    D[1] = D[2] = 1;

    for(int i=3; i<=MAX; i++)

        D[i] = D[i-1] + D[i-2];

}

unsigned long long fibo(int x) {

    return D[x];

}

int main() {

    dp();

    printf("%llu", fibo(50));

}

// 상향식 방법이 더 좋은가?

#include <stdio.h>

unsigned long long D[100];

unsigned long long fibo(int x) {

   if(x==1 || x==2) return 1;

   // 이미 계산한 적 있으면 그대로 반환

   if(D[x] != 0) return D[x];

   // 아직 계산하지 않은 문제라면 계산

   D[x] = fibo(x-1) + fibo(x-2);

   return D[x];

}

int main() {

    printf("%llu", fibo(50));

}

// 하향식 방법이 더 좋은가?

425



다이나믹 프로그래밍(DP)

▪상향식 다이나믹 프로그래밍이 좋지 않은 경우

• 대부분의 경우 하향식으로 문제를 푸는 것보다 상향식으로 문제를 푸는 것이 좋

다. 하향식은 재귀호출로 인해 발생하는 부하 때문에 속도가 더 느리기 때문이다.

• 하지만 경우에 따라서 하향식 풀이법을 선택해야 할 수도 있다.

• 하향식 접근 방법은 모든 하위 문제를 풀지 않고 전체 문제의 해답을 얻는데 필

요한 하위 문제만을 푼다.

• 상향식 다이나믹 프로그래밍에서는 전체 문제의 풀이에 도달하기 전 모든 하위

문제에 대해서 계산을 수행한다.

• 따라서 상향식 방법은 드물게 실제 필요한 것보다 훨씬 더 많은 하위 문제를 풀

어야 하는 경우가 있다.

• 따라서 이를 살펴야 한다.

426



다이나믹 프로그래밍(DP)

▪ 하향식 방법이 더 유리한 예시

• 수학에서 조합 계산

 𝐶 𝑛, 𝑚 = 𝐶 𝑛 − 1, 𝑚 + 𝐶 𝑛 − 1, 𝑚 − 1

ex) 𝐶 5, 4 = C 4, 4 + C(4, 3)

• 상향식에서는 D[n+1][m+1] 배열을 선언

하고,

• 파스칼의 삼각형을 구성한 다음 n번째

행의 m번째 값을 반환 (zero-base 

index)

▪ 파스칼의 삼각형



다이나믹 프로그래밍(DP)

▪ 상향식 풀이 ▪ 하향식 풀이
int combi(int n,  int m) {

    if(n==0 || m==0 || n==m)

        return 1;

    else

        return combi(n-1, m)+combi(n-1, m-1);

}

for(int a=0; a<=n; a++) {

for(int b=0; b<=m; b++) {

if(a==0 || b==0 || a==b)

D[a][b] = 1;

else

D[a][b] = D[a-1][b] + D[a-1][b-1];

}

}



다이나믹 프로그래밍(DP)

▪ 파스칼 삼각형(하향식)

#include <iostream>

int n, m;

int D[50][50];

void output_pascal_trangle() {

    putchar('\n');

    for(int a=0; a<=n; a++) {

        for(int b=0; b<=m; b++) {

            if(b<=a) {

                printf("%d ", D[a][b]);

            }

        }

        putchar('\n');

    }

}

429

int combi(int n,  int m) {

    if(n==0 || m==0 || n==m)

        return D[n][m] = 1;

    else

        return D[n][m] = combi(n-1, m)+combi(n-1, m-1);

}

int main() {

    scanf("%d %d", &n, &m);

    printf("%d\n", combi(n, m));

    output_pascal_trangle();

    return 0;

}



다이나믹 프로그래밍(DP)

▪ 파스칼 삼각형(상향식)

#include <iostream>

int n, m;

int D[50][50];

void make_pascal_triangle() {

    putchar('\n');

    for(int a=0; a<=n; a++) {

        for(int b=0; b<=m; b++) {

            if(b<=a) {

                if(a==0 || b==0 || a==b)

                    D[a][b] = 1;

                else

                    D[a][b] = D[a-1][b] + D[a-1][b-1];

                printf("%d ", D[a][b]);

            }

        }

        putchar('\n');

    }

    putchar('\n');

}
430

int main() {

    scanf("%d %d", &n, &m);

    make_pascal_triangle();

    printf("%d\n", D[n][m]);

    return 0;

}



문제: 계단오르기

▪ 문제

1층에서 2층으로 올라가는 계단을 생각해 보
자 여러분은 계단을 어떻게 올라가는가? 안전
하게 한 칸, 한 칸씩 오르는가? 아니면 성큼
성큼 두 칸씩 오르는가? 아니면 한 칸 또는
두 칸 마음 내키는 대로...? 아마도 수많은
방법이 있을 것이다.

초등학생인 충북이는 아직 다리가 짧아 한 걸
음에 계단을 최대 3개까지 오를 수 있다.

충북이가 n개의 계단을 오르는 모든 방법의
수를 계산하는 프로그램을 작성하시오.

 

예를 들어 2개의 계단으로 구성되어 있다면,

① 한 칸, 한 칸

② 두 칸

위와 같이 두 가지 방법이 존재하고,

예를 들어 3개의 계단으로 구성되어 있다면,

① 한 칸, 한 칸, 한 칸

② 한 칸, 두 칸

③ 두 칸, 한 칸

④ 세 칸

위와 같이 네 가지 방법이 존재한다.

▪ 입력형식

첫 번째 줄에 계단의 수 자연수 N이 입력된다.

(1 ≤ N ≤ 36) 

▪ 출력형식

첫 번째 줄에 계단을 오르는 방법의 수를 자
연수로 출력한다.

431

입력 예 출력 예

3 4

• 출처: 2023 충북정올 학교예선 초등부 4번

5명이 해결한 문제



풀이: 계단오르기

▪ 고찰

432

▪  점화식 표현

f(1) = 1

f(2) = 2

f(3) = 4

f(n) = f(n-3)+ 

f(n-2)+ f(n-1)

계단 수 오르는 방법 방법 개수

⑴ ① ① 1 1

⑵
⑴+①

②

①+①

②

1

1
2

⑶

⑴+②

⑵+①

③

①+②

①+①+①, ②+①

③

1

2

1

4

⑷

⑴+③

⑵+②

⑶+①

①+③

①+①+②, ②+②

①+②+①, ①+①+①+①, ②+①+①, ③+①

1

2

4

7

⑸

⑵+③

⑶+②

⑷+①

①+①+③, ②+③

생략

생략

2

4

7

13



풀이: 계단오르기
#include <stdio.h>

#define  N  40

int memo[N];

int methods(int f) {

}

int main(void)  {

    int n;

    scanf("%d", &n); 

    printf("%d", methods(n));

    return 0;

}

// 풀이 1: 재귀 호출

// 계단의 수가 33이 넘어가면 제한시간 1초 내에 해결 불가능

#include <stdio.h>

int methods(int f) {

    if(f == 1)

        return 1;

    else if(f == 2)

        return 2;

    else if(f == 3)

        return 4;

    else

        return methods(f-3)+methods(f-2)+methods(f-1);

}

int main(void) {

    int n;

    scanf("%d", &n);

    printf("%d", methods(n));

    return 0;

}

433

#include <stdio.h>

#define  N  40

int memo[N];

int methods(int f) {

    if(memo[f] != 0) 

        return memo[f];

    if(f == 1)      memo[1]=1;

    else if(f == 2) memo[2]=2;

    else if(f == 3) memo[3]=4;

    else   memo[f] = methods(f-3) + methods(f-2) + methods(f-1);

    return memo[f];

}

int main(void)  {

    int n;

    scanf("%d", &n); 

    printf("%d", methods(n));

    return 0;

}



거스름돈Ⅱ

▪ 문제

N가지 종류의 화폐가 있다. 이 화폐들을 최소

한으로 이용해서 거스름돈 M원을 만들려고

한다. 이 때 각 화폐는 몇 개라도 사용할 수 있

으며, 사용한 화폐의 구성은 같지만 순서만 다

른 것은 같은 경우로 구분한다.

예를 들어 500원, 100원, 50원, 10원 단위의

화폐가 있을 때, 거스름돈 1270원을 만들려면

500원 2개, 100원 2개, 50원 1개, 10원 2개 총

7개를 사용하는 것이 가장 최소한의 화폐 개

수이다.

▪ 입력값

첫째 줄에 M, N이 주어진다.  

(1 <= N <= 100, 1 <= M <= 10,000)

둘째 줄에는 각 화폐의 가치가 공백으로 구분되

어 N개 주어진다. 화폐의 가치는 10,000보다 작

거나 같은 자연수 이다.

▪ 출력값

M원을 만들기 위해 필요한 최소 화폐 개수를

출력한다. 불가능할 때는 -1을 출력한다.

434

입력 예 출력 예

4 1270
500 100 50 10

7

4 35
1 2 7 10

5

입력 예 출력 예

3 4
3 5 7

-1



거스름돈Ⅱ – DFS 풀이

▪ DFS 탐색

• 화폐 단위: 2원, 3원, 5원 일 때,

▪ dfs 소스코드

Φ

2 3 5

3 52 3 52 3 52

3 52 3 52 3 52 3 52 3 52 3 52 3 52 3 52 3 52

cnt=0

cnt=1

cnt=2

cnt=3

//cnt: 사용한 화폐 수, won: 현재 금액

void dfs(int cnt, int won) {

    //더 많은 화폐를 써야 한다면 서브트리 탐색 중단

    if(cnt > sol) return;

    //만들어낸 금액이 목표보다 크면 서브 트리 탐색 중단

    if(won > m)   return;

    if(won == m) {

        if(cnt < sol) {

            sol = cnt;

        }

        return;

    }

    for(int i=0; i<n; i++) {

        dfs(cnt+1, won+c[i]);

    }

}

2 3 5

4 5 7

2 3 5

5 6 8 7 8 10



거스름돈Ⅱ  - DFS를 이용한 풀이 기본

//cnt: 사용한 화폐수, won: 현재 금액

void dfs(int cnt, int won) {

    //만들어낸 금액이 목표보다 크면 서브 트리 탐색 중단

if(won > m)   return;

    //지금까지 알아낸 방법보다 더 많은 화폐를 써야 한다면 중단

if(cnt > sol) return;

    if(won == m) {

        if(cnt < sol) {

            sol = cnt;

        }

        return;

    }

    for(int i=0; i<n; i++) {

        dfs(cnt+1, won+c[i]);

    }

}

// M원을 만들기 위한 최소 화폐 조합이 몇 가지 있는지 알아 내려면?

// 해당 화폐 조합을 추적하려면?

#include <stdio.h>

#include <limits>

using namespace std;

int c[10]; // 화폐단위 저장 배열

int n, m;

int sol = INT_MAX;

int methods = 0;  // 몇 가지 방법이 존재하는가?

void dfs(int cnt, int won);

int main() {

    scanf("%d %d", &n, &m);

    for(int i=0; i<n; i++)

        scanf("%d", &c[i]);

    dfs(0, 0);  // 동전0개, 0원에서 출발

if(sol != INT_MAX)

        printf("%d\n", sol);

    else

        printf("-1\n");

}

dfs_make_chang.cpp

https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change.cpp


거스름돈Ⅱ  - DFS를 이용한 풀이 업그레이드

//cnt: 사용한 화폐수, won: 현재 금액

void dfs(int cnt, int won) {

    //만들어낸 금액이 목표보다 크면 서브 트리 탐색 중단

    if(won > m)   return;

    //지금까지 알아낸 방법보다 더 많은 화폐를 써야 한다면 중단

    if(cnt > sol) return;

    if(won == m) {

        if(cnt < sol) {

            sol = cnt;

            methods = 1;

            output();

        }

        else if(cnt == sol) {

            methods++;

            output();

        }

        return;

    }

    for(int i=0; i<n; i++) {

        v.push_back(c[i]);

        dfs(cnt+1, won+c[i]);

        v.pop_back();

    }

}

#include <stdio.h>

#include <limits>

#include <vector>

using namespace std;

int c[10]; // 화폐단위 저장 배열

int n, m;

int sol = INT_MAX;

int methods = 0;  // 몇 가지 방법이 존재하는가?

vector<int> v;

void dfs(int cnt, int won);

void output() {

    for(int x : v)

        printf("%3d,", x);

    printf("\b (%d)\n", sol);

}

int main() {

    scanf("%d %d", &n, &m);

    for(int i=0; i<n; i++)

        scanf("%d", &c[i]);

    dfs(0, 0);  // 동전0개, 0원에서 출발

    if(sol != INT_MAX)

        printf("%d\n%d\n", sol, methods);

    else

        printf("-1\n");

}

dfs_make_chang_methods.cpp

https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dfs_make_change_methods.cpp


거스름돈Ⅱ – BFS 풀이

▪ BFS 탐색

• 화폐 단위: 2원, 5원, 7원 일 때,

Φ

2 3 5

3 52 3 52 3 52

3 52 3 52 3 52 3 52 3 52 3 52 3 52 3 52 3 52

cnt=0

cnt=1

cnt=2

cnt=3

typedef struct {

    int cnt;

    int won;

} node;

void bfs() {

    queue <node> Q;

Q.push({0, 0});  // 0개, 0원에서 시작

    while(! Q.empty()) {

        node v = Q.front();  //큐의 첫 원소

        Q.pop();             //뽑아내기

        if(v.won == m) { // 목표 금액에 도달하면

sol = v.cnt;

   break;

        }

        for(int i=0; i<n; i++) {

            // 목표 금액 m 이하 일때만 서브노트 탐색

            if(v.won+c[i] <= m)

                Q.push({v.cnt+1, v.won+c[i]});

        }

    }

}

4 5 7

2 3 5

5 6 8 7 8 10



거스름돈Ⅱ  - BFS를 이용한 풀이 기본

void bfs() {

    queue <node> Q;

    Q.push({0, 0}); // 0개, 0원에서 시작

while(! Q.empty()) {

        node v = Q.front();

        Q.pop();

        if(v.won == m) { // 목표 금액에 도달하면

sol = v.cnt;

            break;

        }

        for(int i=0; i<n; i++) {

            // 목표 금액 m이하일 때만 서브노드 탐색

if(v.won+c[i] <= m) {

                Q.push({v.cnt+1, v.won+c[i]});

            }

        }

    }

}

// M원을 만들기 위한 최소 화폐 조합이 몇 가지 있는지 알아 내려면?

// 해당 화폐 조합을 추적하려면?

#include <stdio.h>

#include <limits.h>

#include <queue>

#include <vector>

using namespace std;

typedef struct {

    int cnt;

    int won;

}node;

int c[10];         // 화폐단위 저장 배열

int n, m;

int sol = INT_MAX; // 답(최소 화폐 개수)

void bfs();

int main() {

    scanf("%d %d", &n, &m);

    for(int i=0; i<n; i++)

        scanf("%d", &c[i]);

    bfs();

    if(sol != INT_MAX)

        printf("%d\n", sol);

    else

        printf("-1\n");

}

bfs_make_chang.cpp

https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change.cpp


거스름돈Ⅱ  - BFS를 이용한 풀이 업그레이드
void bfs() {

    queue <node> Q;    

    Q.push({0, 0, vector<int>()}); // 0개, 0원에서 시작

while(! Q.empty()) {

        node v = Q.front();

        Q.pop();

        // 찾아낸 답보다 크면 더 이상 탐색할 필요 없음

if(v.cnt > sol) break;

        if(v.won == m) { // 목표 금액에 도달하면

sol = v.cnt;

            methods++;

            //break;  //답 한 개 찾았다고 바로 나가면 안됨.

            printf("[%d]: ", sol);

            for(int c: v.cv)

                printf("%3d, ", c);

            printf("\b \n");

        }

        for(int i=0; i<n; i++) {

            // 목표 금액 m이하일 때만 서브노드 탐색

            if(v.won+c[i] <= m) {

                vector<int> cv(begin(v.cv), end(v.cv));

                cv.push_back(c[i]);

                Q.push({v.cnt+1, v.won+c[i], cv});

            }

        }

    }

}

#include <stdio.h>

#include <limits.h>

#include <queue>

#include <vector>

using namespace std;

typedef struct {

    int cnt;

    int won;

    vector<int> cv;

}node;

int c[10];         // 화폐단위 저장 배열

int n, m;

int sol = INT_MAX; // 답(최소 화폐 개수)

int methods = 0;   // 몇 가지 방법이 존재하는가?

void bfs();

int main() {

    scanf("%d %d", &n, &m);

    for(int i=0; i<n; i++)

        scanf("%d", &c[i]);

    bfs();

    if(sol != INT_MAX)

        printf("%d\n%d\n", sol, methods);

    else

        printf("-1\n");

}

←sol
← methods

bfs_make_chang_methods.cpp

https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/bfs_make_change_methods.cpp


거스름돈Ⅱ – DP를 이용한 풀이

▪ 화폐단위가 2원, 3원, 5원 인 경우 문제 해설

화폐의 단위: k, 금액 t를 만들 수 있는 최소한의 화폐 개수: at 

at-k는 금액 (t-k)를 만들 수 있는 최소한의 화폐 개수

• 점화식

at-k를 만드는 방법이 존재하는 경우, at=min(at , at-k+1)

at-k를 만드는 방법이 존재하지 않는 경우, at=99999

• 예

(2원으로 7원을 만드는 방법) a7 = min(7원 만드는 방법, 5원 만드는 방법+1 ) = min(a7, a5+1)

(3원으로 7원을 만드는 방법) a7 = min( a7 , 4원 만드는 방법+1 ) = min(a7 , a4+1)

(5원으로 7원을 만드는 방법) a7 = min( a7 , 2원 만드는 방법+1 ) = min(a7 , a2+1)



거스름돈Ⅱ - 바텀업 DP 구현

▪ 화폐단위가 2원, 3원, 5원 인 경우 문제 해설

• 초기화

(1) 2원 짜리로 몇 번 만에 만들 수 있는가?

idx 0 1 2 3 4 5 6 7 …

값 0 99999 99999 99999 99999 99999 99999 99999 …

445

idx 0 1 2 3 4 5 6 7 8 …

값 0 99999 1 99999 2 99999 3 99999 4 …

99999은 불가능 하다는
의미
0은 0개로 만들 수 있다.

a2 = min(a2 , a0+1) = min(99999, 0+1) = 1

a3 = min(a3 , a1+1) = min(99999, 99999+1) = 99999

a4 = min(a4 , a2+1) = min(99999, 1+1) = 2

a5 = min(a5 , a3+1) = min(99999, 99999+1) = 99999

a6 = min(a6 , a4+1) = min(99999, 2+1) = 3



거스름돈Ⅱ - 바텀업 DP 구현

▪ 화폐단위가 2원, 3원, 5원 인 경우 문제 해설

(2) 3원 짜리를 추가로 사용하면 몇 번 만에 만들 수 있는가?

446

idx 0 1 2 3 4 5 6 7 8 …

값 0 99999 1 1 2 2 2 3 3 …

a3 = min(a3 , a0+1) = min(99999, 0+1) = 1

a4 = min(a4 , a1+1) = min(2, 99999+1) = 2

a5 = min(a5 , a2+1) = min(99999, 1+1) = 2

a6 = min(a6 , a3+1) = min(3, 1+1) = 2

a7 = min(a7 , a4+1) = min(99999, 2+1) = 3

a8 = min(a8 , a5+1) = min(4, 2+1) = 3

idx 0 1 2 3 4 5 6 7 8 …

값 0 99999 1 99999 2 99999 3 99999 4 …
전

후



거스름돈Ⅱ - 바텀업 DP 구현

▪ 화폐단위가 2원, 3원, 5원 인 경우 문제 해설

(3) 5원 짜리를 추가로 사용하면 몇 번 만에 만들 수 있는가?

447

idx 0 1 2 3 4 5 6 7 8 …

값 0 99999 1 1 2 1 2 2 2 …

a5 = min(a5 , a0+1) = min(2, 0+1) = 1

a6 = min(a6 , a1+1) = min(2, 99999+1) = 2

a7 = min(a7 , a2+1) = min(3, 1+1) = 2

a8 = min(a8 , a3+1) = min(3, 1+1) = 2 

 :        :

idx 0 1 2 3 4 5 6 7 8 …

값 0 99999 1 1 2 2 2 3 3 …
전

후



거스름돈Ⅱ - 바텀업 DP 구현

#include <iostream>  // DP 바텀업 구현

#include <algorithm>

#define  MAX  10000

#define  INF  999

using namespace std;

int d[MAX+1];   // DP 테이블

int c[10];      // 화폐단위 저장 배열

int N, M;

void output(int idx) {

    printf("\n(%2d)\n", c[idx]);

    for(int x=0; x<=M; x++)

        printf(" [%3d]", x);

    puts("");

    for(int x=0; x<=M; x++)

        printf("  %3d,", d[x]);

    puts("");

}

void dp() {

    d[0] = 0;

    for(int i=1; i<=M; i++)

        d[i]=INF;

    for(int i=0; i<N; i++) { // 각 화폐단위 a[i]에 대하여

for(int t=c[i]; t<=M; t++) {

d[t] = min(d[t], d[t-c[i]]+1);

        }

        output(i);

    }

}

int main() {

    scanf("%d %d", &N, &M);

    for(int i=0; i<N; i++)

        scanf("%d", &c[i]);

    dp();

    int min_count = d[M];

    if(min_count != INF)

        printf("%d\n", min_count);

    else

        printf("-1\n");

}

?

dp_make_chang.cpp

https://gifted.datahub.pe.kr/src/gifted/make_change/dp_make_chage.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dp_make_chage.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dp_make_chage.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dp_make_chage.cpp


거스름돈Ⅱ - 바텀업 DP 구현

2원짜리 사용하였을 때, 최소 개수 계산

3원짜리 사용하였을 때, 최소 개수 계산

5원짜리 사용하였을 때, 최소 개수 계산



거스름돈을 만드는 방법

▪ 문제

N가지 종류의 화폐가 있다. 이 화폐들을 최

소한으로 이용해서 거스름돈 M원을 만들려

고 한다. 이 때 각 화폐는 몇 개라도 사용할

수 있으며, 사용한 화폐의 구성은 같지만 순

서만 다른 것은 같은 경우로 구분한다.

합이 정확히 M원이 되도록 만드는 방법의 개

수를 구하는 프로그램을 작성하시오. (동전 순

서는 무시)

▪ 입력값

첫째 줄에 M, N이 주어진다.  

(1 <= N <= 100, 1 <= M <= 10,000)

이후의 N개의 줄에는 각 화폐의 가치가 주어진

다. 화폐의 가치는 10,000보다 작거나 같은 자연

수 이다.

▪ 출력값

합이 정확히 M원이 되도록 만드는 방법의 개수

를 출력한다.

450

입력 예 출력 예

3 5
1 2 5

4

make_change_methods_quiz.html

https://gifted.datahub.pe.kr/make_change_methods_quiz.html
https://gifted.datahub.pe.kr/make_change_methods_quiz.html


거스름돈을 만드는 방법

▪ 손으로 시뮬레이션

• c원 동전 사용하여 v원을 만드는 방법 = 

기존 방법 + (v-c원 만드는 방법에 c원

동전을 추가)

• dp[v] = dp[v] + dp[v-c]



#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main() {

int N, M;

if (!(cin >> N >> M)) 

return 0;

vector<int> coin(N);

for (int i = 0; i < N; ++i) 

cin >> coin[i];

// 1) 같은 액면 중복 제거(중복되면 같은 조합을 여러 번 세게 됨)

    sort(coin.begin(), coin.end());

coin.erase(unique(coin.begin(), coin.end()), coin.end());

// 2) dp[v] = 금액 v를 만드는 "순서-무시" 방법 수

vector<int> dp(M + 1, 0);

// 3) 기저값: 0원을 만드는 방법 "아무 동전도 사용하지 않는" 1가지

dp[0] = 1;

// 4) 동전 바깥 루프(조합만 카운트하기 위해 순서 고정)

    for (int c : coin) {

if (c > M) continue; // 동전이 M보다 크면 계산 스킵

// 5) 오름차순 금액 순회(무한 사용 허용)

        for (int v = c; v <= M; ++v) {

// v를 만들 때 마지막으로 c를 하나 더 붙이는 경우의 수를 더한다.

            // 그 수는 "v - c를 만드는 모두의 경우 수"와 동일.

            dp[v] += dp[v - c];

}

}

// 6) 정답

cout << dp[M] << "\n";

return 0;

}

거스름돈을 만드는 방법 DP 구현



#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main() {

int N, M;

if (!(cin >> N >> M)) 

return 0;

vector<int> coin(N);

for (int i = 0; i < N; ++i) 

cin >> coin[i];

// 반드는 방법을 저장하는 벡터

vector<vector<vector<int>>> methods(M+1);

methods[0].push_back({}); // 0원 = 빈 조합 1개

// 1) 같은 액면 중복 제거(중복되면 같은 조합을 여러 번 세게 됨)

    sort(coin.begin(), coin.end());

coin.erase(unique(coin.begin(), coin.end()), coin.end());

// 2) dp[v] = 금액 v를 만드는 "순서-무시" 방법 수

vector<int> dp(M + 1, 0);

// 3) 0원을 만드는 방법 "아무 동전도 사용하지 않는" 1가지

dp[0] = 1;

// 4) 동전 바깥 루프(조합만 카운트하기 위해 순서 고정)

    for (int c : coin) {

if (c > M) continue; // 동전이 M보다 더 크면 계산 건너뜀

// 5) 오름차순 금액 순회(무한 사용 허용)

        for (int v = c; v <= M; v++) { // c원부터 M원까지

// v를 만들 때 마지막으로 c를 하나 더 붙이는 경우의 수를 더한다.

            // 그 수는 "v - c를 만드는 모두의 경우 수"와 동일.

            dp[v] += dp[v - c];

for(vector<int> b : methods[v-c]) {

b.push_back(c);

methods[v].push_back(b);

}

}

}

// 6) 정답

cout << dp[M] << "\n";

for(vector<int> v: methods[M]) {

for(int a: v)

printf("%d,", a);

printf("\b \n");

}

return 0;

}

거스름돈을 만드는 방법 DP 구현
dp_make_chang_methods.cpp

https://gifted.datahub.pe.kr/src/gifted/make_change/dp_make_chang_methods.cpp
https://gifted.datahub.pe.kr/src/gifted/make_change/dp_make_chang_methods.cpp


Processing Programming

p5.js

454



도형 그리기, 글씨 쓰기

▪ 소스코드 ▪ 실행화면
function setup() {

  createCanvas(600, 400);

}

function draw() {

  //sky blue background

  background(135, 206, 235);

  //sun in top-right corner

  fill("yellow");

  circle(550, 50, 100);

 

  //grass on bottom half

  fill("green");

  rect(0, 200, 600, 200);

 

  //emojis

  textSize(75)

  text(" ", 100, 250) //flower

  text(" ", mouseX, mouseY) //ladybug

}



도형 그리기, 글씨 쓰기

▪ 소스코드 ▪ 실행화면
function setup() {

  createCanvas(500, 400);

}

function draw() {

  background(135, 206, 235);   

  fill("yellow");//yellow  

  stroke("orange"); //orange outline 

  strokeWeight(20); //large outline    

  circle(width, 50, 100);

  stroke(0);//black outline

  strokeWeight(1);//outline thickness

  

  fill("green");

  rect(0, height/2, width, height/2);

  

  textSize(70);

  text(" ", 100, 250) //flower

  text(" ", mouseX, mouseY) //ladybug

  

  textSize(15);  

  text(`${Math.floor(frameRate())}`, 20, 20);

  text(`${mouseX}, ${mouseY}`, 20, 40);

}



random()

▪ random() 은 균등 분포를 따르며 모든 결과가 동등한 가능성을 가집

니다. random() 이 숫자를 생성하는 데 사용될 때, 출력 범위 내의

모든 숫자는 반환될 확률이 동등합니다. random() 이 배열에서 요소

를 선택하는 데 사용될 때, 모든 요소는 선택될 확률이 동등합니다.

▪ randomSeed() 함수를 사용하여 스케치가 실행될 때마다 동일한 숫자

또는 선택 시퀀스를 생성할 수 있습니다.

▪ 사용 예

• 0 <= random() < 1

• 0 <= random(m) < m

• a <= random(a, b) < b

• random([' ', ' ', ' '])



random()

▪ 소스코드 ▪ 실행화면
function setup() {

  createCanvas(400, 400);

  background(255);

}

function draw() {

  x = random(0, width);

  y = random(0, height);

  

  r = floor(random(255));

  g = floor(random(255));

  b = floor(random(255));

  a = floor(random(255));

  console.log(x, y, r, g, b, a);

  

  noStroke();

  fill(r, g, b, a);

  circle(x, y, 20);

}



애니메이션

▪ 소스코드 ▪ 실행화면
let x, y, r, c;

function setup() {

  createCanvas(400, 400);

  x=0;

  y=200;

  r=150;

  c=0;

}

function draw() {

  background(220);

  fill(c)

  circle(x, y, r);

  

  x=x+1;

}



애니메이션

▪ 소스코드 ▪ 실행화면
let x1, x2;

function setup() {

  createCanvas(400, 400);  

  

  x1 = x2 = 0;

}

function draw() {

  background(220);  

  

  fill(0);

  

  circle(x1, 100, 40);

  x1 += 1;

  

  circle(x2, 300, 40);

  x2 += 2;

}



애니메이션

▪ 소스코드 ▪ 실행화면

▪ 개선

• 더 자연스러운 낙하

• 수평선에서 멈추기

let x, y, r, h;

function setup() {

  createCanvas(400, 400);

  

  x = width/2;

  y = 0;

  r = 20;

  h = 300;

}

function draw() {

  background(255);

  

  line(0, h, width, h);

  circle(x, y, r);

  

  text(`${y+r}`, 20, 20);

  y += 10;

}



애니메이션

▪ 소스코드 ▪ 실행화면

▪ 개선

• 더 자연스러운 낙하

• 수평선에서 멈추기

let x, y, r, h;

function setup() {

  createCanvas(400, 400);  

  x = width/2;

  y = 0;

  r = 20;

  h = 300;  

  frameRate(60);

}

function draw() {

  background(255);  

  line(0, h, width, h);

  circle(x, y, r);  

  text(`${y+r}`, 20, 20);

  

  if(y+r/2 >= h) {

    noLoop();

  }

  else {

    y += 5;

  }

}



애니메이션

▪ 소스코드 ▪ 실행화면

• 천장과 바닥에서 계속 튕기는 공

let x, y, d;

function setup() {

  createCanvas(400, 400);  

  

  x = width/2;

  y = 10;

  d = 5;

}

function draw() {

  background(210);

  

  circle(x, y, 20);

  y += d;

  

}

let x, y, d;

function setup() {

  createCanvas(400, 400);  

  

  x = width/2;

  y = 10;

  d = 5;

}

function draw() {

  background(210);

  

  circle(x, y, 20);

  y += d;

  

  if(y+10>height || y-10<0)

    d = -d;

}



애니메이션

▪ 소스코드 ▪ 실행화면
function setup() {

  createCanvas(400, 400);

}

function draw() {

  let d=20;

  let cnt=0;

  

  for(let y=0; y<height; y+=d) {

    for(let x=0; x<width; x+=d) {

      fill(map(cnt++, 1, width/d * height/d, 0, 255));

      rect(x, y, d, d);

      //print(x, y, d, d);

    }

  }

  noLoop();

}



애니메이션

▪ 소스코드 ▪ 아날로그TV 백색 잡음
function setup() {

  createCanvas(400, 400);  

}

function draw() {

  background(255);

  s = 5; // 크기

for(let y=0; y<height; y+=s) {

    for(let x=0; x<width; x+=s) {

      r=floor(random(256))

      g=floor(random(256))

      b=floor(random(256))

      noStroke()

      fill(r)

      rect(x,y,s,s);

    }

  }

}



키보드 입력

▪ 소스코드 ▪ 실행화면
function setup() {

  createCanvas(400, 400);

}

let c = 0;

function draw() {

  background(220);

  text(`${keyCode}`, 20, 20);

  

  fill(c);

  rect(150, 150, 100, 100)

}

function keyPressed() {

  if(c>=255) c=0;

  else c+=10;

}



키보드 입력

▪ 소스코드 ▪ 실행화면
// Click on the canvas to begin detecting key presses.

let value = 0;

function setup() {

  createCanvas(100, 100);

}

function draw() {

  background(200);

  fill(value);

  square(25, 25, 50);

}

// Toggle the background color when the user presses an arrow key.

function keyPressed() {

  if (keyCode === LEFT_ARROW) {

    value = 255;

  } else if (keyCode === RIGHT_ARROW) {

    value = 0;

  }

  // Uncomment to prevent any default behavior.

  // return false;

}



키보드 입력

▪ 소스코드 ▪ 실행화면
function setup() { 

  createCanvas(400, 400);

} 

function draw() { 

  background(255);

  

  textAlign(CENTER);

  textSize(80);

  

  if (keyIsPressed){

    text(`key: ${key}`, 200, 200);

    text(`key: ${keyCode}`, 200, 300);

  }

}



마우스 위치

▪ 소스코드 ▪ 실행화면
function setup() {

  createCanvas(400, 400);

}

let x, y;

function draw() {

  background(220);

  strokeWeight(5);

  stroke('blue');

  fill(255);

  circle(mouseX, mouseY, 20);

}



마우스 위치

▪ 소스코드 ▪ 실행화면

?

function setup() {

  createCanvas(400, 400);

  frameRate(50);

}

function draw() {

  background(244, 248, 252)

  line(mouseX, 0, mouseX, 100)

  //line(0, mouseY, 100, mouseY)  

}



마우스 위치

▪ 퀴즈

• 사각형을 클릭하면 사각형이 10픽셀

씩 오른쪽, 아래쪽으로 이동

▪ 소스코드
let x=150, y=150;

function setup() {

  createCanvas(400, 400);

}

function draw() {

  background(220);

  

  rect(x,y,100,100)

}

function mousePressed() {

    // 퀴즈영역

}



마우스 위치

▪ 퀴즈

• 사각형을 클릭하면 사각형이 10픽셀

씩 오른쪽, 아래쪽으로 이동

▪ 소스코드
let x=150, y=150, c=0;

function setup() {

  createCanvas(400, 400);

}

function draw() {

  background(220);

  fill(c);

  rect(x,y,100,100);

}

function mousePressed() {

  if(mouseButton === LEFT)

    c='red';

  else if(mouseButton === RIGHT)

    c='blue';

  else if(mouseButton === CENTER)

    c='yellow';  

  else

    c = 'black'

  

  if(x<=mouseX&&mouseX<x+100 && 

y<=mouseY&&mouseY<y+100)

    x+=10, y+=10;

}



마우스 위치

▪ 소스코드 ▪ 실행화면
function setup() {

  createCanvas(400, 400);

}

function draw() {

  //when mouse button is pressed, 

  // circles turn black

  if (mouseIsPressed === true) {

    fill(0);

  } else {

    fill(255);

  }

  //white circles drawn at mouse position

  circle(mouseX, mouseY, 100);

}



마우스 위치

▪ 소스코드
▪ 실행화면

//custom variables for y coordinate of sun & horizon

let sunHeight;

let horizon = 200;

function setup() {

  createCanvas(400, 400);

}

function draw() {

  //sun follows y-coordinate of mouse

  sunHeight = mouseY;

  if (sunHeight < horizon) {

    background("lightblue"); // blue sky

  } else {

    background(0); // night sky

  }

  //sun

  fill("yellow");

  circle(200, sunHeight, 160);

  // draw line for horizon

  stroke("green");

  line(0, horizon, 400, horizon);

  //grass

  fill("green");

  rect(0, horizon, 400, 400);

}



Circle clicker game

▪  

•

▪ 개조 포인트

• 원 클릭 시 일괄적으로 1점 추가가

아니라

• 원이 작을수록 포인트가 점점 누적되

고 (이 포인트가 왼쪽 상단에 출력)

• 클릭에 성공하면 이 포인트를 점수에

추가

• 원 밖을 클릭하면 게임오버! 되도록

만들기

https://p5js.org/examples/games-circle-clicker/

https://p5js.org/examples/games-circle-clicker/
https://p5js.org/examples/games-circle-clicker/
https://p5js.org/examples/games-circle-clicker/
https://p5js.org/examples/games-circle-clicker/
https://p5js.org/examples/games-circle-clicker/


Circle clicker game
let circleX;

let circleY;

let circleRadius;

let circleMaximumRadius;

let circleColor;

let score = 0;

let pts = 0;

let highScore;

function setup() {

  createCanvas(700, 700);

  colorMode(HSB);

  noStroke();

  ellipseMode(RADIUS);

  textSize(36);

  // Get the last saved high score

  highScore = getItem('high score');

  // If no score was saved, start with a value of 0

  if (highScore === null || isNaN(highScore)) {

    highScore = 0;

  }

}

function draw() {

  background(20);

  // If the circle had not shrunk completely

  if (circleRadius > 0) {

    // Draw the circle

    fill(circleColor);

    circle(circleX, circleY, circleRadius);

    describeElement('Circle', 'Randomly colored shrinking circle');

    // Shrink it

    circleRadius -= 1;

    pts++;

    fill(220);

    textAlign(LEFT, TOP);

    text(pts, 20, 20);

    // Show the score

    textAlign(RIGHT, TOP);

    text(score, width - 20, 20);

    describeElement('Score', `Text with current score: ${score}`);

  } 

  else {

    // Otherwise show the start/end screen

    endGame();

  }

}



Circle clicker game
function startGame() {

  // Reset the score to 0

  score = 0;

  circleMaximumRadius = min(height / 4, width / 4);

  resetCircle();

}

function endGame() {

  // Pause the sketch

  noLoop();

  // Store the new high score

  highScore = max(highScore, score);

  storeItem('high score', highScore);

  textAlign(CENTER, CENTER);

  fill(220);

  let startText = `써클 클리커

너무 작아지기 전에 원을 클릭하세요.

  이번 점수: ${score}

  최고 점수: ${highScore}

  클릭하면 시작!`;

  text(startText, 0, 0, width, height);

  describeElement('Start text', `Text reading, "${startText}"`);

}

function resetCircle() {

  pts=1;

  circleRadius = circleMaximumRadius;

  circleX = random(circleRadius, width - circleRadius);

  circleY = random(circleRadius, height - circleRadius);

  circleColor = color(random(240, 360), random(40, 80), random(50, 90));

}

function mousePressed() {

  // If the game is unpaused

  if (isLooping() === true) {

    let distanceToCircle = dist(mouseX, mouseY, circleX, circleY);

    // If the mouse is closer to the circle's center than the circle's radius,

    // that means the player clicked on it

    if (distanceToCircle < circleRadius) {

      // Decrease the maximum radius, but don't go below 15

      circleMaximumRadius = max(circleMaximumRadius - 1, 15);

      // Give the player a point

      score += pts;

      resetCircle();

    }

    else {

      circleRadius = 0

    }

  } else {

    startGame();

    loop();

  }

}



ping pong game

▪ draw board

• drawPaddles()

• drawBall()

• drawScore()

▪ enable start

• resetBall()

• mousePressed()

▪ ball control

• ckeckEdge()

• movePaddles()

• checkCollision()

▪ 충돌영역 체크

• https://gifted.data hub.pe.kr/src/gifted/processing/ping%20pong/

(15, 210)

(25, 290)

(20, 250)

https://gifted.datahub.pe.kr/src/gifted/processing/ping%20pong/
https://gifted.datahub.pe.kr/src/gifted/processing/ping%20pong/
https://gifted.datahub.pe.kr/src/gifted/processing/ping%20pong/
https://gifted.datahub.pe.kr/src/gifted/processing/ping%20pong/


Snake game

▪ Food

• moveFood()

• drawFood()

▪ Snake1

• resetSnake()

• startGame()에 주석 해제

• drawSnake()

▪ Snake2

• moveSnake()

• updateBody()

▪ KeyControl

• goUp(), goDown(), 

• goLeft(), goRight()

• keyPressed()

▪  Snake3

• checkEdges()

• checkFood()

• checkSelf()

https://gifted.datahub.pe.kr/src/gifted/processing/snake_game/

https://gifted.datahub.pe.kr/src/gifted/processing/snake_game/


Snake game

▪ 화면 레이아웃

gameBoyEmulator

canvas

actionButtons

gameContainer

body

playButton

pauseButton

buttonContainer



Snake game

▪ 게임판 설계

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

food

snake head



Snake game

▪ updateBody()
[0] [1] [2] [3] [4]

(1,1) (2,1) (3,1) (4,1) (5,1)

// Update the positions of the

// snake's body segments.

function updateBody() {

  // Update the end of the tail.

  for (let i = snake.body.length-1; i>0; i-=1) {

    snake.body[i].x = snake.body[i-1].x;

    snake.body[i].y = snake.body[i-1].y;

  }

  

  // Update the head.

  snake.body[0].x = snake.x;

  snake.body[0].y = snake.y;

}

[0] [1] [2] [3] [4]

(0,1) (1,1) (2,1) (3,1) (4,1)



질의 응답

483


	슬라이드 1: 알 고 리 즘 < C언어 >
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8: 실행 파일 생성과정
	슬라이드 9: OJ 사용법
	슬라이드 10: OJ 사용법
	슬라이드 11: Online Judge 프로그램 계정 정보
	슬라이드 12: C 언어 기초 문법
	슬라이드 13: C 언어 기초 문법
	슬라이드 14: 수의 표현 방식
	슬라이드 15: C언어의 자료형(data type)
	슬라이드 16: 수의 표현 방식
	슬라이드 17: C언어의 자료형(data type)
	슬라이드 18: 수의 표현 방식
	슬라이드 19: 수의 표현 방식
	슬라이드 20: 수의 표현 방식
	슬라이드 21: 수의 표현 방식
	슬라이드 22: 수의 표현 방식
	슬라이드 23: 수의 표현 방식
	슬라이드 24: C언어의 자료형(data type)
	슬라이드 25: 수의 표현 방식
	슬라이드 26: 변수 (variable)
	슬라이드 27: 서식문자
	슬라이드 28: 서식문자
	슬라이드 29: printf 함수의 기본적인 이해
	슬라이드 30: 상수 (constant)
	슬라이드 31: 상수 (constant)
	슬라이드 32: 서식문자
	슬라이드 33: 연산자(operator)
	슬라이드 34: 연산자(operator)
	슬라이드 35: 연산자(operator)
	슬라이드 36: 자료의 형변환(type casting)
	슬라이드 37: 자료의 형변환(type casting)
	슬라이드 38: 연산자(operator)
	슬라이드 39: 연산자(operator)
	슬라이드 40: 연산자(operator)
	슬라이드 41: 연산자(operator)
	슬라이드 42: 연산자(operator)
	슬라이드 43: scanf() 함수를 이용한 입력
	슬라이드 44: 연습문제 – 직사각형의 넓이
	슬라이드 45: 제어문
	슬라이드 46: 선택 실행 구조
	슬라이드 47: 선택 실행 구조
	슬라이드 48: 조건문 – if
	슬라이드 49: 연산자(operator)
	슬라이드 50: 연산자(operator)
	슬라이드 51: 조건문 – if
	슬라이드 52: 조건문 – if
	슬라이드 53: 연습문제
	슬라이드 54: 연산자(operator)
	슬라이드 55: 조건문 – if
	슬라이드 56: 조건문 – if
	슬라이드 57: 조건문 – switch
	슬라이드 58: 연습문제
	슬라이드 59: 반복문
	슬라이드 60: 반복문 - while
	슬라이드 61: 반복문 - while
	슬라이드 62: 반복문 - while
	슬라이드 63: 반복문 - while
	슬라이드 64: 반복문 - while
	슬라이드 65: 연습문제
	슬라이드 66: 반복문 – do … while
	슬라이드 67: 소인수로 분해하기
	슬라이드 68: 중첩된 while
	슬라이드 69: 반복문 - for
	슬라이드 70: 반복문 - for
	슬라이드 71: 반복문 - for
	슬라이드 72: 반복문 – for 문과 while 문 비교
	슬라이드 73: 3의 배수 게임
	슬라이드 74: 약수의 합 구하기
	슬라이드 75: 약수의 합 구하기
	슬라이드 76: 공약수 찾기
	슬라이드 77: 반복문 – 중첩된 for
	슬라이드 78: 반복문 – 중첩된 for
	슬라이드 79: 반복문 – 중첩된 for
	슬라이드 80: 반복문 – 중첩된 for
	슬라이드 81: 중첩된 for문 활용
	슬라이드 82: 중첩된 for문 활용
	슬라이드 83
	슬라이드 84: 제어문 – break
	슬라이드 85: 소수 판별
	슬라이드 86: 제어문 – continue
	슬라이드 87: 최대공약수와 최소공배수
	슬라이드 88: 최대공약수 구하기
	슬라이드 89: 최대공약수 구하기
	슬라이드 90: 최대공약수 구하기 <유클리드 호제법>
	슬라이드 91: 최대공약수 구하기 <유클리드 호제법>
	슬라이드 92: 최대공약수 구하기 <유클리드 호제법>
	슬라이드 93: 최대공약수 구하기
	슬라이드 94: 최대공약수 구하기 (유클리드 호제법이용)
	슬라이드 95: 최대공배수 구하기
	슬라이드 96: 함수
	슬라이드 97: 내장 함수
	슬라이드 98: 사용자 정의 함수
	슬라이드 99: 사용자 정의 함수
	슬라이드 100: 사용자 정의 함수
	슬라이드 101: 사용자 정의 함수
	슬라이드 102: 사용자 정의 함수
	슬라이드 103: 사용자 정의 함수
	슬라이드 104
	슬라이드 105: 사용자 정의 함수
	슬라이드 106: 함수 만들기 연습
	슬라이드 107: 함수 만들기 연습
	슬라이드 108: 함수 만들기 연습
	슬라이드 109: 가변인자 함수
	슬라이드 110: 가변인자 함수
	슬라이드 111: 매크로 함수
	슬라이드 112: 지역변수 / 전역변수
	슬라이드 113: 지역변수 / 전역변수
	슬라이드 114: 팩토리얼 계산
	슬라이드 115: 팩토리얼 계산
	슬라이드 116: 재귀함수
	슬라이드 117: 재귀함수
	슬라이드 118: 재귀함수
	슬라이드 119: 연습문제
	슬라이드 120: 재귀 함수 – 연습문제1
	슬라이드 121: 재귀 함수 – 연습문제2
	슬라이드 122: 연습문제 풀이: 계단오르기
	슬라이드 123: 연습문제 풀이: 계단오르기
	슬라이드 124: 배열
	슬라이드 125: 배열
	슬라이드 126: 배열
	슬라이드 127: 배열
	슬라이드 128: 입력된 자연수 개수 출력하기
	슬라이드 129: 입력된 자연수 개수 출력하기(풀이)
	슬라이드 130: 숫자 목록에서 수 찾기
	슬라이드 131: 숫자 목록에서 수 찾기(풀이)
	슬라이드 132: 최댓값 찾기
	슬라이드 133: 최댓값 찾기(풀이)
	슬라이드 134: 2진수로 변환하기
	슬라이드 135: 2진수로 변환하기(풀이)
	슬라이드 136: 배열
	슬라이드 137: SWAP
	슬라이드 138: SWAP
	슬라이드 139: SWAP
	슬라이드 140: 정렬 알고리즘
	슬라이드 141: 정렬 알고리즘
	슬라이드 142: 정렬 알고리즘
	슬라이드 143: 정렬 알고리즘
	슬라이드 144: 정렬 알고리즘
	슬라이드 145: STL sort() 함수 사용하기
	슬라이드 146
	슬라이드 147: 정렬하여 k번째 수 찾기
	슬라이드 148: 다차원 배열
	슬라이드 149: 다차원 배열
	슬라이드 150: 격자판의 최댓값
	슬라이드 151: 격자판의 최댓값
	슬라이드 153: 투 포인터(Two Pointers)
	슬라이드 154: 투 포인터(Two Pointers)
	슬라이드 155: 투 포인터(Two Pointers)
	슬라이드 156: 투 포인터(Two Pointers)
	슬라이드 157: 투 포인터(Two Pointers)
	슬라이드 158: 투 포인터(Two Pointers)
	슬라이드 159: 투 포인터(Two Pointers)
	슬라이드 160: 투 포인터(Two Pointers)
	슬라이드 161: 슬라이딩 윈도우 (Sliding Window)
	슬라이드 162: 슬라이딩 윈도우 (Sliding Window)
	슬라이드 163: 슬라이딩 윈도우 (Sliding Window)
	슬라이드 164: 문제: 최고의 패
	슬라이드 165: 문제: 최고의 패
	슬라이드 166: 정답: 최고의 패 
	슬라이드 167: 정답: 최고의 패
	슬라이드 168: 난수의 생성과 활용 
	슬라이드 169: 의사 랜덤
	슬라이드 170: 의사 랜덤
	슬라이드 171
	슬라이드 172: 의사 랜덤
	슬라이드 173: 의사 랜덤
	슬라이드 174: 의사 랜덤
	슬라이드 175: 의사 랜덤
	슬라이드 176: Up & Down 숫자 맞추기 게임
	슬라이드 177: Up & Down 숫자 맞추기 게임
	슬라이드 178: Up & Down 숫자 맞추기 게임
	슬라이드 179: 숫자 야구
	슬라이드 180: 숫자 야구
	슬라이드 181
	슬라이드 182
	슬라이드 183: 몬테카를로 알고리즘
	슬라이드 185: 몬테카를로 원주율 시뮬레이션
	슬라이드 186: 몬테카를로 원주율 시뮬레이션 (C버전)
	슬라이드 187: 몬테카를로 원주율 시뮬레이션
	슬라이드 188: 몬테카를로 원주율 시뮬레이션
	슬라이드 189: 알고리즘의 효율성
	슬라이드 190: 시간 복잡도
	슬라이드 191: 알고리즘의 시간 복잡도
	슬라이드 192: 알고리즘의 시간 복잡도
	슬라이드 193: 빅오 표기의 종류
	슬라이드 194: 빅오 표기의 종류
	슬라이드 195: 빅오 표기의 종류
	슬라이드 196: 빅오 표기의 종류
	슬라이드 197: 빅오 표기의 종류
	슬라이드 198: 시간제한 피하기
	슬라이드 199: 알고리즘의 공간 복잡도
	슬라이드 200: 선형 탐색 feat. 탐색공간의 수학적 배제
	슬라이드 201: 탐색공간의 배제
	슬라이드 202: 약수의 합
	슬라이드 203: 약수의 합
	슬라이드 204: 약수의 합
	슬라이드 205: 약수의 합
	슬라이드 206: 약수의 합
	슬라이드 207: N번째 소수 찾기
	슬라이드 208: N번째 소수 찾기
	슬라이드 209: N번째 소수 찾기
	슬라이드 210: N번째 소수 찾기
	슬라이드 211: 삼각화단 만들기
	슬라이드 212: 삼각화단 만들기
	슬라이드 213: 삼각화단 만들기
	슬라이드 214: 삼각화단 만들기
	슬라이드 215: 삼각화단 만들기
	슬라이드 216: C++ 입출력
	슬라이드 217: C++ 입출력
	슬라이드 218: C++ 입출력
	슬라이드 219: C++ 입출력
	슬라이드 220: C++ 입출력
	슬라이드 221: C++ 입출력
	슬라이드 222: 구조체
	슬라이드 223: 구조체
	슬라이드 224: STL (Standard Template Library)
	슬라이드 225
	슬라이드 226: 1) 컨테이너
	슬라이드 227: 1) 컨테이너 (container)
	슬라이드 228: 2) 반복자 (interator)
	슬라이드 229: 3) 알고리즘
	슬라이드 230: STL Container
	슬라이드 231: Standard Sequence Containers Overview
	슬라이드 232: array 컨테이너
	슬라이드 233: array 컨테이너
	슬라이드 234: vector container
	슬라이드 235: vector container
	슬라이드 236: vector container
	슬라이드 237: vector container
	슬라이드 239
	슬라이드 240: deque container
	슬라이드 241: deque container
	슬라이드 242: deque container
	슬라이드 243
	슬라이드 244: STL iterator
	슬라이드 245: STL 반복자 (iterator)
	슬라이드 247: STL algorithm
	슬라이드 248: STL 알고리즘 sort (primitive type)
	슬라이드 249: STL 알고리즘 sort (primitive type)
	슬라이드 250: STL 알고리즘 sort (custom type)
	슬라이드 251: STL 알고리즘 sort (custom type) cont.
	슬라이드 253: queue container
	슬라이드 254: queue container
	슬라이드 255: 힙(heap)
	슬라이드 256: 힙(heap)
	슬라이드 257: 힙(heap)
	슬라이드 258: 힙(heap)
	슬라이드 259: 힙(heap)
	슬라이드 260: priority_queue container
	슬라이드 263: priority_queue container
	슬라이드 264: priority_queue container
	슬라이드 265: 문제: 창고
	슬라이드 266: 문제: 창고
	슬라이드 267: 문제: 창고
	슬라이드 268
	슬라이드 269: 창고 해답 작동 추적하기
	슬라이드 270: 자료구조 선형구조와 비선형구조
	슬라이드 271: 자료구조
	슬라이드 272: 선형구조
	슬라이드 273: 선형구조
	슬라이드 274: 비선형구조
	슬라이드 275: 비선형구조 - 그래프
	슬라이드 276: 비선형구조 - 그래프
	슬라이드 277: 비선형 탐색 비선형구조의 전체탐색(DFS vs BFS)
	슬라이드 278: 탐색
	슬라이드 279: 탐색
	슬라이드 280: 트리구조의 깊이우선탐색(DFS)
	슬라이드 281: DFS 활용 순열 조합 1
	슬라이드 282: DFS 활용 순열 조합 1
	슬라이드 283: DFS 활용 순열 조합 1
	슬라이드 285: 합이 k가 되는 수열 만들기(중복허용)
	슬라이드 287: 합이 k가 되는 수열 만들기
	슬라이드 288: DFS 활용 순열 조합 2
	슬라이드 289: DFS 활용 순열 조합 2
	슬라이드 291: 숫자 카드로 수열 만들기Ⅰ
	슬라이드 292: 숫자 카드로 수열 만들기 Ⅰ
	슬라이드 293: 숫자 카드로 수열 만들기 Ⅱ
	슬라이드 295: 숫자 카드로 수열 만들기 Ⅱ
	슬라이드 296: DFS 활용 순열 조합 3
	슬라이드 297: DFS 활용 순열 조합 3
	슬라이드 298: DFS 활용 순열 조합 3
	슬라이드 299: 공평한 배분
	슬라이드 300: 공평한 배분
	슬라이드 301: 공평한 배분
	슬라이드 303: 리모콘1
	슬라이드 304: 리모콘1 (초기설계)
	슬라이드 305: 리모콘1 (초기설계)
	슬라이드 307: 리모콘1 (초기설계)
	슬라이드 308: 리모콘1 (개선설계)
	슬라이드 310: 리모콘1 (개선설계)
	슬라이드 311: 리모콘1
	슬라이드 312: 트리구조의 너비우선탐색(BFS)
	슬라이드 313: 리모콘1 BFS 풀이
	슬라이드 315: 실행결과
	슬라이드 316: 리모콘2 (채널 빨리 바꾸기)
	슬라이드 317: 리모콘2 (채널 빨리 바꾸기)
	슬라이드 318: 리모콘2
	슬라이드 319: DFS를 이용한 방법
	슬라이드 320
	슬라이드 321: BFS를 이용한 방법
	슬라이드 322
	슬라이드 323: 거스름돈Ⅱ (순한맛)
	슬라이드 324: 거스름돈Ⅱ (DFS + BFS)
	슬라이드 327: 테이블의 최소 합
	슬라이드 328: 테이블의 최소 합
	슬라이드 329: 테이블의 최소 합 DFS (기본설계)
	슬라이드 331: 테이블의 최소 합
	슬라이드 332: 테이블의 최소 합
	슬라이드 333
	슬라이드 334: 테이블의 최소 합 – 탐색배제 성능비교
	슬라이드 335: 케이블 재사용
	슬라이드 336: 케이블 재사용
	슬라이드 337: 케이블 재사용
	슬라이드 341: 비선형구조의 자료의 표현
	슬라이드 342: 깊이우선탐색(DFS)
	슬라이드 343: 깊이우선탐색(DFS)
	슬라이드 344: 깊이우선탐색(DFS)
	슬라이드 345: 깊이우선탐색(DFS)
	슬라이드 346: 깊이우선탐색(DFS)
	슬라이드 347: 깊이우선탐색(DFS)
	슬라이드 348
	슬라이드 349
	슬라이드 350: 너비우선탐색(BFS)
	슬라이드 351: 너비우선탐색(BFS)
	슬라이드 352: 너비우선탐색(BFS)
	슬라이드 353: 너비우선탐색(BFS)
	슬라이드 354
	슬라이드 355
	슬라이드 356: 미로 탈출 (BFS vs DFS)
	슬라이드 357: 미로 탈출
	슬라이드 358: 미로 탈출
	슬라이드 359: 미로 탈출 (초기설계)
	슬라이드 360: 미로 탈출 - DFS로 구현
	슬라이드 361: 미로 탈출 - DFS로 구현
	슬라이드 362: 미로 탈출 - DFS로 구현
	슬라이드 363: 미로 탈출 - DFS로 구현
	슬라이드 364: 미로 탈출 – DFS 최종 구현
	슬라이드 365: 미로 탈출 - BFS로 구현
	슬라이드 366: 미로 탈출 - BFS로 구현
	슬라이드 367: 미로 탈출 - BFS로 구현
	슬라이드 368
	슬라이드 369: 최단경로 이동하기
	슬라이드 370: 최단경로 이동하기
	슬라이드 373: 원하는 물의 양 얻기(water pouring puzzle)
	슬라이드 374: 원하는 물의 양 얻기(기본설계)
	슬라이드 375
	슬라이드 376
	슬라이드 377: 가중치 간선 맵(미로)에서 최소비용 경로 탐색하기
	슬라이드 378: 가중치 간선 맵(미로)?
	슬라이드 379: 연구활동 가는 길
	슬라이드 380: 연구활동 가는 길
	슬라이드 381: 연구활동 가는 길
	슬라이드 383
	슬라이드 384
	슬라이드 385: 연구활동 가는 길
	슬라이드 386: 연구활동 가는 길
	슬라이드 387
	슬라이드 388: 연구활동 가는 길
	슬라이드 389
	슬라이드 390: 연구활동 가는 길 – 탐색의 배제
	슬라이드 391: 다익스트라(dijkstra) 알고리즘 
	슬라이드 392: 다익스트라(dijkstra) 알고리즘 
	슬라이드 393: 다익스트라(dijkstra) 알고리즘 
	슬라이드 394: 다익스트라(dijkstra) 알고리즘 
	슬라이드 395: 다익스트라(dijkstra) 알고리즘 
	슬라이드 396: 다익스트라(dijkstra) 알고리즘 
	슬라이드 397: 다익스트라(dijkstra) 알고리즘 
	슬라이드 398: 다익스트라(dijkstra) 알고리즘 
	슬라이드 399: 개선된 다익스트라 알고리즘 굵게 기울임꼴 대문자 O 여는 괄호 여는 괄호 굵게 기울임꼴 대문자 V 더하기 굵게 기울임꼴 대문자 E , 닫는 괄호 , 굵게 기울임꼴 l 굵게 기울임꼴 o 굵게 기울임꼴 g of 굵게 기울임꼴 대문자 V , 닫는 괄호 
	슬라이드 400: 개선된 다익스트라 알고리즘 굵게 기울임꼴 대문자 O 여는 괄호 여는 괄호 굵게 기울임꼴 대문자 V 더하기 굵게 기울임꼴 대문자 E , 닫는 괄호 , 굵게 기울임꼴 l 굵게 기울임꼴 o 굵게 기울임꼴 g of 굵게 기울임꼴 대문자 V , 닫는 괄호 
	슬라이드 401: 개선된 다익스트라 알고리즘 굵게 기울임꼴 대문자 O 여는 괄호 여는 괄호 굵게 기울임꼴 대문자 V 더하기 굵게 기울임꼴 대문자 E , 닫는 괄호 , 굵게 기울임꼴 l 굵게 기울임꼴 o 굵게 기울임꼴 g of 굵게 기울임꼴 대문자 V , 닫는 괄호 
	슬라이드 402: 개선된 다익스트라 알고리즘 굵게 기울임꼴 대문자 O 여는 괄호 여는 괄호 굵게 기울임꼴 대문자 V 더하기 굵게 기울임꼴 대문자 E , 닫는 괄호 , 굵게 기울임꼴 l 굵게 기울임꼴 o 굵게 기울임꼴 g of 굵게 기울임꼴 대문자 V , 닫는 괄호 
	슬라이드 403: 다익스트라(dijkstra) 알고리즘 작동과정
	슬라이드 404: 다익스트라(dijkstra) 알고리즘의 적용
	슬라이드 405: 플로이드-워셜(Floyd-Warshall) 알고리즘
	슬라이드 406: 플로이드-워셜(Floyd-Warshall) 알고리즘
	슬라이드 407: 플로이드-워셜(Floyd-Warshall) 알고리즘
	슬라이드 408: 플로이드-워셜(Floyd-Warshall) 알고리즘
	슬라이드 409: 플로이드-워셜(Floyd-Warshall) 알고리즘
	슬라이드 410: 플로이드-워셜(Floyd-Warshall) 알고리즘
	슬라이드 411: 플로이드-워셜(Floyd-Warshall) 알고리즘
	슬라이드 412: 플로이드-워셜(Floyd-Warshall) 알고리즘 구현
	슬라이드 413: 플로이드-워셜(Floyd-Warshall) 알고리즘 구현
	슬라이드 414: 웜 바이러스
	슬라이드 415: 웜 바이러스
	슬라이드 416: 웜 바이러스 풀이
	슬라이드 417: DP (동적계획법) (Dynamic Programming)
	슬라이드 418: 다이나믹 프로그래밍(DP)
	슬라이드 419: 다이나믹 프로그래밍(DP)
	슬라이드 420: 다이나믹 프로그래밍(DP)
	슬라이드 421: 다이나믹 프로그래밍(DP)
	슬라이드 422: 다이나믹 프로그래밍(DP)
	슬라이드 423: 다이나믹 프로그래밍(DP)
	슬라이드 424: 다이나믹 프로그래밍(DP)
	슬라이드 425: 다이나믹 프로그래밍(DP)
	슬라이드 426: 다이나믹 프로그래밍(DP)
	슬라이드 427: 다이나믹 프로그래밍(DP)
	슬라이드 428: 다이나믹 프로그래밍(DP)
	슬라이드 429: 다이나믹 프로그래밍(DP)
	슬라이드 430: 다이나믹 프로그래밍(DP)
	슬라이드 431: 문제: 계단오르기
	슬라이드 432: 풀이: 계단오르기
	슬라이드 433: 풀이: 계단오르기
	슬라이드 434: 거스름돈Ⅱ
	슬라이드 435: 거스름돈Ⅱ – DFS 풀이
	슬라이드 436: 거스름돈Ⅱ  - DFS를 이용한 풀이 기본
	슬라이드 437: 거스름돈Ⅱ  - DFS를 이용한 풀이 업그레이드
	슬라이드 438: 거스름돈Ⅱ – BFS 풀이
	슬라이드 439: 거스름돈Ⅱ  - BFS를 이용한 풀이 기본
	슬라이드 440: 거스름돈Ⅱ  - BFS를 이용한 풀이 업그레이드
	슬라이드 441: 거스름돈Ⅱ – DP를 이용한 풀이
	슬라이드 445: 거스름돈Ⅱ - 바텀업 DP 구현
	슬라이드 446: 거스름돈Ⅱ - 바텀업 DP 구현
	슬라이드 447: 거스름돈Ⅱ - 바텀업 DP 구현
	슬라이드 448: 거스름돈Ⅱ - 바텀업 DP 구현
	슬라이드 449: 거스름돈Ⅱ - 바텀업 DP 구현
	슬라이드 450: 거스름돈을 만드는 방법
	슬라이드 451: 거스름돈을 만드는 방법
	슬라이드 452
	슬라이드 453
	슬라이드 454: Processing Programming p5.js
	슬라이드 455: 도형 그리기, 글씨 쓰기
	슬라이드 456: 도형 그리기, 글씨 쓰기
	슬라이드 457: random()
	슬라이드 458: random()
	슬라이드 459: 애니메이션
	슬라이드 460: 애니메이션
	슬라이드 461: 애니메이션
	슬라이드 462: 애니메이션
	슬라이드 463: 애니메이션
	슬라이드 464: 애니메이션
	슬라이드 465: 애니메이션
	슬라이드 466: 키보드 입력
	슬라이드 467: 키보드 입력
	슬라이드 468: 키보드 입력
	슬라이드 469: 마우스 위치
	슬라이드 470: 마우스 위치
	슬라이드 471: 마우스 위치
	슬라이드 472: 마우스 위치
	슬라이드 473: 마우스 위치
	슬라이드 474: 마우스 위치
	슬라이드 475: Circle clicker game
	슬라이드 476: Circle clicker game
	슬라이드 477: Circle clicker game
	슬라이드 478: ping pong game
	슬라이드 479: Snake game
	슬라이드 480: Snake game
	슬라이드 481: Snake game
	슬라이드 482: Snake game
	슬라이드 483: 질의 응답

